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Takagi function

Figure: The graph of the Takagi function for A = 2/3.
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Figure: The graph of the Takagi function for A = 2/3.

> For % < A < 1, the Takagi function for parameter A is

[e.e]
Ta(x) =) A\"dist(2"x, Z).
n=0
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Takagi function

Figure: The graph of the Takagi function for A = 2/3.

> For % < A < 1, the Takagi function for parameter A is
o0
Ta(x) =) A\"dist(2"x, Z).
n=0

» A well known example of a "pathological" continuous but

nowhere differentiable function.
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Motivation

What can we say about the size of the slices of Ty with lines?
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» Marstrand’s slicing theorem implies that
dimy (TN (V + x)) < dimy(Ty) — 1, for Lebesgue almost
all V € RP! and x € R?.

> By Barany, Hochman and Rapaport we know that

dimH(T)\) =2 %.

> If A = 3, then dimp (TN (V +x)) < 3, for all x € R? and all
V with integer slope and the bound is sharp (de Amo et al.).
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Motivation

What can we say about the size of the slices of Ty with lines? \

» Marstrand’s slicing theorem implies that
dimy (TN (V + x)) < dimy(Ty) — 1, for Lebesgue almost
all V € RP! and x € R?.

> By Barany, Hochman and Rapaport we know that
dimH(T)\) =2 %.

> If A = 3, then dimp (TN (V +x)) < 3, for all x € R? and all
V with integer slope and the bound is sharp (de Amo et al.).

> What can we say about all slices?
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Main result

By interpreting the Takagi function as a self-affine set, we get the
following result:
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Main result

By interpreting the Takagi function as a self-affine set, we get the
following result:

Theorem (A.-Béarany-Kaenmaki, 2023)

If Ty is the graph of the Takagi function, with % < A<1, then

ﬁ;?_x dimH(T)\ N (V +X)) = dimA(T)\) —1<1.
x€Ty

VeRrp!
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Weak tangents and Assouad dimension

Let X C R? be compact and T, ,: R? — R2? be a similarity taking
Q(x,r) = x+0, r]? to the unit cube @ = [0,1]? in an orientation
preserving way.
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Weak tangents and Assouad dimension

Let X C R? be compact and T, ,: R? — R2? be a similarity taking
Q(x,r) = x+0, r]? to the unit cube @ = [0,1]? in an orientation
preserving way. If there is a sequence Ty, ., such that r, — 0 and

T X)NQ = T

in the Hausdorff distance, then T is called a weak tangent of
X.The collection of weak tangents of X is denoted by Tan(X).

Theorem (Kadenmaki-Ojala-Rossi, 2018)

If X C R? is a compact set, then

dima(X) = max{dimy(T): T € Tan(X)}.
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Self-affine sets

A finite collection {;(x) = Aix + t;}M, of invertible contractive
affine maps on R? is called a self-affine iterated function system
(affine IFS).
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affine maps on R? is called a self-affine iterated function system
(affine IFS). Given an affine IFS, there exists a unique, non-empty
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Self-affine sets

A finite collection {;(x) = Aix + t;}M, of invertible contractive
affine maps on R? is called a self-affine iterated function system
(affine IFS). Given an affine IFS, there exists a unique, non-empty
compact set X which is invariant under the IFS, that is

M
X = ei(X).
i=1

We say that X satisfies the strong separation condition if

©i(X) Nj(X) =0, for all i # j, The associated symbolic space
of infinite words is denoted by ¥ = {1,..., M}" and the set of
finite words of length n by ¥,. The elements of these spaces are
denoted by i = (i1, i2,...).
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First example

Figure: A Bedford-McMullen carpet
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Second example

Figure: The Takagi function is an attractor of an affine IFS
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Definitions

> Let ai(A) > az(A) denote the singular values of A, i.e. the
lengths of the longer and shorter semiaxes of A(B(0,1)),
respectively.

> We assume strict inequality.

> Let ¥(A) denote the line spanned by the longer semiaxis of
A(B(0,1)).
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Definitions

> ForicX, let
Y1(1) = nI|_>r'2019(A,-1 oA,
= N 1 -1
Uo(1) = ,,I'_Egoﬁ(Ail Cc AT,

if the limit exists.
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Definitions

> ForicX, let
Y1(1) = nll_>ngoz9(A,-1 oA,
= N ~1 -1
Uo(1) = nll_)rr(;oﬁ(Ai1 Cc AT,

if the limit exists.

> Geometric interpretation: ¥1(i) are the limiting directions of
the construction cylinders.
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Domination
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Domination

> A self-affine set X is dominated if there exist constants
C >0and 0 <7 <1, such that

ax(Aiy .. Ai)

al(A,-l L A,’n)

foralneNandiecX,.
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Domination

> A self-affine set X is dominated if there exist constants
C >0and 0 <7 <1, such that

ax(Ay ... - Ap)

< G,
ag(Ay - ... Ai)

foralneNandiecX,.

If X is dominated, then the limit directions 91(i) and U»(1) exist
for all i € ¥ and the convergence is uniform. Moreover, the sets
Yr = Y1(X) and Xp = 02(X) are disjoint compact sets.
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Domination

> A self-affine set X is dominated if there exist constants
C >0and 0 <7 <1, such that

ax(Ay ... - Ap)

< G,
ag(Ay - ... Ai)

foralneNandiecX,.

If X is dominated, then the limit directions 91(i) and U»(1) exist
for all i € ¥ and the convergence is uniform. Moreover, the sets
Yr = Y1(X) and Xp = 02(X) are disjoint compact sets.

> We call the sets Yr and Xg the forward and backward
Furstenberg directions, respectively.
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Assouad dimension of self-affine sets

> There is a natural connection between the Assouad dimension
of self-affine sets and the dimensions of their slices and
projections. (Mackay, Fraser, Fraser-Rutar,
Barany-Kadenmaki-Rossi)
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> There is a natural connection between the Assouad dimension
of self-affine sets and the dimensions of their slices and
projections. (Mackay, Fraser, Fraser-Rutar,
Barany-Kadenmaki-Rossi)

Theorem (Barany-Kaenmaki-Yu, 2023)

Let X be a strongly separated, dominated self-affine set with
dimy(X) > 1 and such that Xg is not a singleton. Then

dima(X) =1+ max dimy(X N (V + x)).
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Theorem (Barany-Kaenmaki-Yu, 2023)

Let X be a strongly separated, dominated self-affine set with
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Assouad dimension of self-affine sets

> There is a natural connection between the Assouad dimension
of self-affine sets and the dimensions of their slices and
projections. (Mackay, Fraser, Fraser-Rutar,
Barany-Kadenmaki-Rossi)

Theorem (Barany-Kaenmaki-Yu, 2023)

Let X be a strongly separated, dominated self-affine set with
dimy(X) > 1 and such that Xg is not a singleton. Then

max dimpg(X N (V 4+ x)) = dima(X) — 1.

VeXp

» We want to apply this to the Takagi function.

> Strong separation condition is not satisfied.
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Bounded neighbourhood condition

A self-affine set X satisfies the bounded neighbourhood condition
(BNC) if there is a constant M, such that

#{es | az(As) mr, Bx,r) Nps(X) # 0} < M,

for all x € X and r > 0.
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Bounded neighbourhood condition

Theorem (A.-Béarany-Kaenmaki, 2023)
If X is a dominated self-affine set satisfying the BNC, such that
dimy(projy. X) =1 for all V € Xg, then

dima(X) =1+ max dimy(X N (V +x))
Vexe
=1+ max dima(X N (V + x)).

VERPI\YE
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Bounded neighbourhood condition

Theorem (A.-Béarany-Kaenmaki, 2023)
If X is a dominated self-affine set satisfying the BNC, such that
dimy(projy. X) =1 for all V € Xg, then

dima(X) =1+ max dimy(X N (V +x))
Vexe
=1+ max dima(X N (V + x)).

VERPI\YE

» The Takagi function is a dominated self-affine set and
satisfies the BNC.
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Bounded neighbourhood condition

Theorem (A.-Béarany-Kaenmaki, 2023)

If X is a dominated self-affine set satisfying the BNC, such that
dimy(projy. X) =1 for all V € Xg, then

dima(X) =1+ max dimy(X N (V +x))
Vexe
=1+ max dima(X N (V + x)).

VERPI\YE

» The Takagi function is a dominated self-affine set and
satisfies the BNC.

» Since T) is continuous, it projects to a line segment in all
directions and in particular dimy(proj,,+ Ty) = 1, for all
V € RP'.
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Proof: Upper bound
> Strategy: Bound Hausdorff dimension of all weak tangents
from above.
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» Take any T € Tan(X).
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» Take any T € Tan(X).
> Iterate deep in the construction of T.

» Pull back the "approximate tangent" with the inverse map.
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Proof: Upper bound

» Take any T € Tan(X).
> Iterate deep in the construction of T.
» Pull back the "approximate tangent" with the inverse map.

> Extract a subsequence and obtain a projection of the tangent
into a slice of the original set.

Roope Anttila University of Oulu 18.05.2023 (25/36)



'EJ UNIVERSITY OF OULU

Proof: Upper bound

Take any T € Tan(X).
Iterate deep in the construction of T.

Pull back the "approximate tangent" with the inverse map.

vvvyYyy

Extract a subsequence and obtain a projection of the tangent
into a slice of the original set.

dimy(T) < 14dimy(X N (V 4 x)), where V € Xg.

v
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Proof: Upper bound

Take any T € Tan(X).
Iterate deep in the construction of T.

Pull back the "approximate tangent" with the inverse map.

vvvyYyy

Extract a subsequence and obtain a projection of the tangent
into a slice of the original set.

dimy(T) < 14dimy(X N (V 4 x)), where V € Xg.
dima(X) < 1+ max xex dimy(X N (V + x)).
VeXp

vy
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Proof: Lower bound

> Strategy: Bound Assouad dimension of slices from above.
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Proof: Lower bound
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> Take any line V € RP! \ Yr and x € X.
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Proof: Lower bound

> Take any line V € RP! \ Yr and x € X.

> Let S be a weak tangent of the slice X N (V + x) of maximal
dimension.

» Then S C TN (V +y), where T € Tan(X).
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Proof: Lower bound

> Take any line V € RP! \ Yr and x € X.

> Let S be a weak tangent of the slice X N (V + x) of maximal
dimension.

» Then S C TN (V +y), where T € Tan(X).
> Fiber structure = "S X interval C T"
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Proof: Lower bound

> Take any line V € RP! \ Yr and x € X.

> Let S be a weak tangent of the slice X N (V + x) of maximal
dimension.

» Then S C TN (V +y), where T € Tan(X).

Fiber structure = "S X interval C T"

> dimA(X) = dimH(T) >1 —l-dimH(S) =
1+dima(X N (V 4 x)) > 1 +dimy(X N (V +x)).

v
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Back to the Takagi function

-

M\M\%*\ :
amm

O

"

Theorem (A.-Barany-Kaenmaki, 2023)

If Ty is the graph of the Takagi function, with % < A<1, then

max dimyg(ThN(V +x)) =dima(Ty) —1 < 1.
X< X

VeRpl
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» Qur theorem leaves two possibilities:
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» Qur theorem leaves two possibilities:

1. dima(Ty) = dimy(T,), and the bound of Marstrand's slicing
theorem extends to all slices.
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Extending Marstrand’s theorem

» Qur theorem leaves two possibilities:
1. dima(Ty) = dimy(T,), and the bound of Marstrand's slicing
theorem extends to all slices.
2. dima(Ty) > dimy(T)y) and there is at least one slice which
fails Marstrand’s slicing theorem.
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Extending Marstrand’s theorem

Theorem (A.-Barany-Kaenmaki, 2023)

If Ty is the graph of the Takagi function, with % <A<, andpu
is the projection of the uniform Bernoulli measure on the symbolic
space to Ty, then dima(Ty) = dimy(Ty) and in particular

n;aT)_x dimH(T)\ N (V+X)) = dimH(T)\) — 1
xE€Ty

VeRpl
if and only if
di—mloc(proj VLx Ky proj vi (X)) 21,

for all x € Ty and V € Xg.
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About the proof

» The proof is a technical geometric argument, which
establishes a connection between the local dimensions of the
projected measure and the box dimensions of the slices of the
set along the fibers.
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About the proof

» The proof is a technical geometric argument, which
establishes a connection between the local dimensions of the
projected measure and the box dimensions of the slices of the
set along the fibers.

> Unfortunately, we do not know any values of A where either
of the conditions hold.

Roope Anttila University of Oulu



[EF UNIVERSITY OF OULU

Thank you for your attention!
Questions are welcome!
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