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a

Takagi function

Figure: The graph of the Takagi function for λ = 2/3.

I For 1

2
6 λ < 1, the Takagi function for parameter λ is

Tλ(x) =
∞∑
n=0

λn dist(2nx ,Z).

I A well known example of a "pathological" continuous but

nowhere di�erentiable function.
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a

Motivation

Question

What can we say about the size of the slices of Tλ with lines?

I Marstrand's slicing theorem implies that

dimH(Tλ ∩ (V + x)) 6 dimH(Tλ)− 1, for Lebesgue almost

all V ∈ RP1 and x ∈ R2.

I By Bárány, Hochman and Rapaport we know that

dimH(Tλ) = 2− log(1/λ)
log 2 .

I If λ = 1

2
, then dimH(Tλ ∩ (V + x)) 6 1

2
, for all x ∈ R2 and all

V with integer slope and the bound is sharp (de Amo et al.).

I What can we say about all slices?
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a

Main result

By interpreting the Takagi function as a self-a�ne set, we get the

following result:

Theorem (A.-Bárány-Käenmäki, 2023)

If Tλ is the graph of the Takagi function, with 1

2
< λ < 1, then

max
x∈Tλ
V∈RP1

dimH(Tλ ∩ (V + x)) = dimA(Tλ)− 1 < 1.
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Weak tangents and Assouad dimension

Let X ⊂ R2 be compact and Tx ,r : R2 → R2 be a similarity taking

Q(x , r) := x + [0, r ]2 to the unit cube Q = [0, 1]2 in an orientation

preserving way.

If there is a sequence Txn,rn , such that rn → 0 and

Txn,rn(X ) ∩ Q → T

in the Hausdor� distance, then T is called a weak tangent of

X .The collection of weak tangents of X is denoted by Tan(X ).

Theorem (Käenmäki-Ojala-Rossi, 2018)

If X ⊂ R2 is a compact set, then

dimA(X ) = max{dimH(T ) : T ∈ Tan(X )}.
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a

Self-a�ne sets

A �nite collection {ϕi (x) = Aix + ti}Mi=1
of invertible contractive

a�ne maps on R2 is called a self-a�ne iterated function system

(a�ne IFS).

Given an a�ne IFS, there exists a unique, non-empty

compact set X which is invariant under the IFS, that is

X =
M⋃
i=1

ϕi (X ).

We say that X satis�es the strong separation condition if

ϕi (X ) ∩ ϕj(X ) = ∅, for all i 6= j , The associated symbolic space

of in�nite words is denoted by Σ = {1, . . . ,M}N and the set of

�nite words of length n by Σn. The elements of these spaces are

denoted by i := (i1, i2, . . .).
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a

First example

Figure: A Bedford-McMullen carpet
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Second example

Figure: The Takagi function is an attractor of an a�ne IFS
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a

De�nitions

A

I Let α1(A) > α2(A) denote the singular values of A, i.e. the

lengths of the longer and shorter semiaxes of A(B(0, 1)),
respectively.

I We assume strict inequality.

I Let ϑ(A) denote the line spanned by the longer semiaxis of

A(B(0, 1)).
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a

De�nitions

I For i ∈ Σ, let

ϑ1(i) = lim
n→∞

ϑ(Ai1 · . . . · Ain),

ϑ2(i) = lim
n→∞

ϑ(A−1i1
· . . . · A−1in

),

if the limit exists.

I Geometric interpretation: ϑ1(i) are the limiting directions of

the construction cylinders.
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a

Domination

I A self-a�ne set X is dominated if there exist constants

C > 0 and 0 < τ < 1, such that

α2(Ai1 · . . . · Ain)

α1(Ai1 · . . . · Ain)
6 Cτn,

for all n ∈ N and i ∈ Σn.

Lemma

If X is dominated, then the limit directions ϑ1(i) and ϑ2(i) exist

for all i ∈ Σ and the convergence is uniform. Moreover, the sets

YF := ϑ1(Σ) and XF := ϑ2(Σ) are disjoint compact sets.

I We call the sets YF and XF the forward and backward

Furstenberg directions, respectively.
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a

Assouad dimension of self-a�ne sets

I There is a natural connection between the Assouad dimension

of self-a�ne sets and the dimensions of their slices and

projections. (Mackay, Fraser, Fraser-Rutar,

Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-a�ne set with

dimH(X ) > 1 and such that XF is not a singleton. Then

I We want to apply this to the Takagi function.

I Strong separation condition is not satis�ed.

Roope Anttila University of Oulu 18.05.2023 (11/36)



a

Assouad dimension of self-a�ne sets

I There is a natural connection between the Assouad dimension

of self-a�ne sets and the dimensions of their slices and

projections. (Mackay, Fraser, Fraser-Rutar,

Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-a�ne set with

dimH(X ) > 1 and such that XF is not a singleton. Then

dimA(X ) = 1 + max
x∈X
V∈X

F

dimH(X ∩ (V + x)).

I We want to apply this to the Takagi function.

I Strong separation condition is not satis�ed.

Roope Anttila University of Oulu 18.05.2023 (11/36)



a

Assouad dimension of self-a�ne sets

I There is a natural connection between the Assouad dimension

of self-a�ne sets and the dimensions of their slices and

projections. (Mackay, Fraser, Fraser-Rutar,

Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-a�ne set with

dimH(X ) > 1 and such that XF is not a singleton. Then

max
x∈X
V∈X

F

dimH(X ∩ (V + x)) = dimA(X )− 1.

I We want to apply this to the Takagi function.

I Strong separation condition is not satis�ed.

Roope Anttila University of Oulu 18.05.2023 (11/36)



a

Assouad dimension of self-a�ne sets

I There is a natural connection between the Assouad dimension

of self-a�ne sets and the dimensions of their slices and

projections. (Mackay, Fraser, Fraser-Rutar,

Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-a�ne set with

dimH(X ) > 1 and such that XF is not a singleton. Then

max
x∈X
V∈X

F

dimH(X ∩ (V + x)) = dimA(X )− 1.

I We want to apply this to the Takagi function.

I Strong separation condition is not satis�ed.

Roope Anttila University of Oulu 18.05.2023 (11/36)



a

Assouad dimension of self-a�ne sets

I There is a natural connection between the Assouad dimension

of self-a�ne sets and the dimensions of their slices and

projections. (Mackay, Fraser, Fraser-Rutar,

Bárány-Käenmäki-Rossi)

Theorem (Bárány-Käenmäki-Yu, 2023)

Let X be a strongly separated, dominated self-a�ne set with

dimH(X ) > 1 and such that XF is not a singleton. Then

max
x∈X
V∈X

F

dimH(X ∩ (V + x)) = dimA(X )− 1.

I We want to apply this to the Takagi function.

I Strong separation condition is not satis�ed.

Roope Anttila University of Oulu 18.05.2023 (11/36)



a

Bounded neighbourhood condition

A self-a�ne set X satis�es the bounded neighbourhood condition

(BNC) if there is a constant M, such that

#{ϕi | α2(Ai) ≈ r , B(x , r) ∩ ϕi(X ) 6= ∅} 6 M,

for all x ∈ X and r > 0.
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a

Bounded neighbourhood condition

Theorem (A.-Bárány-Käenmäki, 2023)

If X is a dominated self-a�ne set satisfying the BNC, such that

dimH(projV⊥ X ) = 1 for all V ∈ XF , then

dimA(X ) = 1 + max
x∈X
V∈X

F

dimH(X ∩ (V + x))

= 1 + max
x∈X

V∈RP1\Y
F

dimA(X ∩ (V + x)).

I The Takagi function is a dominated self-a�ne set and

satis�es the BNC.

I Since Tλ is continuous, it projects to a line segment in all

directions and in particular dimH(projV⊥ Tλ) = 1, for all

V ∈ RP1.
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a

Proof: Upper bound
I Strategy: Bound Hausdor� dimension of all weak tangents

from above.
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a

Proof: Upper bound

I Take any T ∈ Tan(X ).

I Iterate deep in the construction of T .

I Pull back the "approximate tangent" with the inverse map.

I Extract a subsequence and obtain a projection of the tangent

into a slice of the original set.

I dimH(T ) 6 1 + dimH(X ∩ (V + x)), where V ∈ XF .

I dimA(X ) 6 1 + max x∈X
V∈X

F

dimH(X ∩ (V + x)).
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I dimA(X ) 6 1 + max x∈X
V∈X

F

dimH(X ∩ (V + x)).
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Proof: Lower bound
I Strategy: Bound Assouad dimension of slices from above.
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Proof: Lower bound

I Take any line V ∈ RP1 \ YF and x ∈ X .

I Let S be a weak tangent of the slice X ∩ (V + x) of maximal

dimension.

I Then S ⊂ T ∩ (V + y), where T ∈ Tan(X ).

I Fiber structure =⇒ "S × interval ⊂ T"

I dimA(X ) > dimH(T ) > 1 + dimH(S) =
1 + dimA(X ∩ (V + x)) > 1 + dimH(X ∩ (V + x)).
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Back to the Takagi function

Theorem (A.-Bárány-Käenmäki, 2023)

If Tλ is the graph of the Takagi function, with 1

2
< λ < 1, then

max
x∈Tλ
V∈RP1

dimH(Tλ ∩ (V + x)) = dimA(Tλ)− 1 < 1.
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Extending Marstrand's theorem

I Our theorem leaves two possibilities:

1. dimA(Tλ) = dimH(Tλ), and the bound of Marstrand's slicing

theorem extends to all slices.

2. dimA(Tλ) > dimH(Tλ) and there is at least one slice which

fails Marstrand's slicing theorem.
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Extending Marstrand's theorem

Theorem (A.-Bárány-Käenmäki, 2023)

If Tλ is the graph of the Takagi function, with 1

2
< λ < 1, and µ

is the projection of the uniform Bernoulli measure on the symbolic

space to Tλ, then dimA(Tλ) = dimH(Tλ) and in particular

max
x∈Tλ
V∈RP1

dimH(Tλ ∩ (V + x)) = dimH(Tλ)− 1,

if and only if

dimloc(projV⊥∗ µ, projV⊥(x)) > 1,

for all x ∈ Tλ and V ∈ XF .
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About the proof

I The proof is a technical geometric argument, which

establishes a connection between the local dimensions of the

projected measure and the box dimensions of the slices of the

set along the �bers.

I Unfortunately, we do not know any values of λ where either

of the conditions hold.
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Thank you for your attention!

Questions are welcome!
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