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Abstract. We study quasisymmetric maps on two variants of the classical

fractal percolation model: the fat and dense fractal percolations. We show
that, almost surely conditioned on non-extinction, the Hausdorff dimension of

the fat fractal percolation cannot be lowered with a quasisymmetry and the

Hausdorff dimension of the dense fractal percolation cannot be lowered with
a power quasisymmetry.

1. Introduction

For a given homeomorphism η : [0,∞) → [0,∞), a function f : X → Y between
metric spaces (X, d) and (Y, ρ) is called an η-quasisymmetry if

ρ(f(x), f(y))

ρ(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
,

for all x, y, z ∈ X with x ̸= z. A function f is called a quasisymmetry if it is
an η-quasisymmetry for some homeomorphism η : [0,∞) → [0,∞). We will often
use the term distortion function for homeomorphisms η : [0,∞) → [0,∞). An

important subclass of quasisymmetries are those with η(t) = Cmax{tβ , t
1
β }, for

some 0 < β ≤ 1, which we call (β-)power quasisymmetries.
Quasisymmetries generalize bi-Lipschitz maps by roughly preserving relative

sizes and shapes of sets with similar size that are close together, but allowing
sets that are either well separated or that have wildly different sizes to be distorted
in different ways. Classifying metric spaces up to quasisymmetric equivalence is a
central problem in geometric function theory, and in this context, quasisymmetric
invariants play an important role. Conformal dimension, which was introduced by
Pansu in [14], is one of the best known such invariants, see also [2].

1.1. Conformal dimension. Unlike bi-Lipschitz maps, quasisymmetries can alter
the Hausdorff dimension of sets. In fact, since the identity map from (X, d) to its
snowflake (X, dε) with 0 < ε < 1 is a quasisymmetry, and since snowflaking the
metric changes the Hausdorff dimension by a factor of 1/ε, the Hausdorff dimension
of a metric space with positive Hausdorff dimension can be made arbitrarily large
with quasisymmetries. On the other hand for some spaces, like Rd, Hausdorff

2020 Mathematics Subject Classification. Primary: 30L10; Secondary: 28A80, 60D05.
Key words and phrases. conformal dimension, fractal percolation, quasisymmetry.
RA was financially supported the Magnus Ehrnrooth foundation and EPSRC, grant no.

EP/Z533440/1. SEB was supported by the Research Council of Finland via the project Geo-
QuantAM: Geometric and Quantitative Analysis on Metric spaces, grant no. 354241. AP was
supported by the Research Council of Finland via grants 354241 and 355453.

1



2 ROOPE ANTTILA, SYLVESTER ERIKSSON-BIQUE, AND ALEKSI PYÖRÄLÄ

dimension cannot be lowered by quasisymmetries, which motivates the definition
of conformal (Hausdorff) dimension, defined for a metric space X by

CdimH X := inf{dimH f(X) : f is a quasisymmetry}.

Calculating the conformal dimension of a given metric space is a challenging prob-
lem and even determining whether Hausdorff dimension can be lowered by a qua-
sisymmetry is often highly non-trivial. Spaces whose dimension cannot be lowered
by quasisymmetries are called minimal for conformal dimension, and the prototyp-
ical examples are sets of the form K × [0, 1], where K is a compact subset of Rd,
see [11, Proposition 4.1.11]. Totally disconnected examples were given in [1].

One can of course replace Hausdorff dimension in the definition with other no-
tions of dimension to obtain a family of quasisymmetric invariants. In addition to
the conformal Hausdorff dimension, much attention has been given to the conformal
Assouad dimension, defined by replacing the Hausdorff dimension in the definition
above, by the Assouad dimension

dimA X := inf

{
s > 0: ∃C > 0, ∀0 < r < R, x ∈ X, Nr(X ∩B(x,R)) ≤ C

(
R

r

)}
,

where Nr(A) denotes the smallest number of open balls of radius r > 0 needed
to cover A. Conformal Assouad dimension is often easier to handle than confor-
mal Hausdorff dimension, see e.g. [9, 12], and for regular enough spaces, namely
quasiself-similar spaces or CLP-spaces, these notions were recently shown to coin-
cide by the second author [6]. A continuum of other variants of conformal dimension
were recently studied in [7].

1.2. Conformal dimension of random fractals. Recently some progress has
been made in understanding the quasiconformal geometry of random objects. In
[16], Rossi and Suomala studied quasisymmetric mappings on the classical fractal
percolation, which is a random subset of the unit cube [0, 1]d constructed by di-
viding it into Nd subcubes of side length 1/N , retaining each independently with
probability p and discarding with probability 1−p and repeating the process inside
all retained subcubes ad infinitum. A key feature of the fractal percolation model is
that the distribution of the number of offspring at each step forms a Galton-Watson
process and in particular, the expected number of offspring of each cube is the same
at each step of the construction; see [10, Section 5] for more background on such
processes. Rossi and Suomala showed that classical fractal percolation is, almost
surely conditioned on non-extinciton, not minimal for the conformal dimension,
see also [7] for discussion on how other variants of conformal dimension behave for
fractal percolation. As pointed out by the authors, the main result of [16] easily
extends to many other random fractals with underlying Galton-Watson processes.
On the other hand, not many examples of random spaces which are minimal for
conformal dimension are known.

This work can be viewed as a natural extension of [16]: what happens if we break
the Galton-Watson process underlying the fractal percolation and instead allow
the expected number of offspring to vary with each construction step? There are
essentially two ways to achieve this phenomenon. Firstly, we may vary the retention
parameter at each construction step, that is pick a sequence of probabilities pn
and retain each subcube of a cube at level n of the construction with probability
pn. Secondly, we may keep the retention probability fixed and vary the number
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Figure 1. On the left a realization of the (3, 0.5)-fractal percola-
tion, in the middle, a realization of the (3,p)-fat fractal percolation
with p0 = 0.5, p1 = 0.6, p2 = 0.65, . . ., and on the right a realiza-
tion of the (N, 0.5)-dense fractal percolation with N1 = 3, N2 = 6,
N3 = 9, . . ..

of cubes in the subdivision at each construction step, that is pick a sequence of
natural numbers Nn and divide each retained cube of level n into Nd

n+1 subcubes
and retain each with probability p. Next we describe these models in detail.

2. Fat and dense fractal percolations

2.1. Fat fractal percolation. Fix an integer N ≥ 2 and a sequence p := (pn)n∈N
such that 0 ≤ pn ≤ 1 for all n, and construct a random set F = F (N,p) ⊆ [0, 1]d as
follows: Divide the cube [0, 1]d into Nd congruent subcubes, retain each one with
probability p1 and discard it with probability 1 − p1. Denote the set of surviving
cubes by F1. For n ≥ 0 and a set Fn of surviving subcubes as above, we define the
set Fn+1 by repeating the above procedure for each cube in Fn, with the parameter
p1 replaced by pn+1, and let Fn+1 denote the set of all surviving subcubes of side
length N−(n+1) obtained this way. Finally, we set

F =
⋂
n∈N

⋃
Q∈Fn

Q ⊆ Rd

and call the set F the (N,p)-fractal percolation; see Figure 1. Motivated by [16],
it is natural to ask the following.

Question 1. Let N ≥ 2. For which sequences p is the (N,p)-fractal percolation
minimal for conformal dimension with positive probability?

A subclass of the random sets F (N,p) which has attracted some interest is that of
the sequence p converging to 1; Given a sequence p = (pn)n∈N with limn→∞ pn = 1,
the set F = F (N,p) is called a (N,p)-fat fractal percolation. Conditioned on
the non-extinction of F , it is not difficult to see that dimH F = d almost surely,
regardless of the choice of the converging sequence p. Nevertheless, the speed of
this convergence has significant implications to finer geometric properties of F , of
which we list a few below. All of the claims hold almost surely conditioned on
non-extinction of F .

(1) If
∏

n∈N pN
dn

n = 0, then F has empty interior.
(2) If

∏
n∈N pn > 0, then F has positive Lebesgue measure.

(3) If
∏

n∈N pN
dn

n > 0, then F is a finite union of closed cubes.
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These points are contained in [3, Theorem 1.9]. We refer to [3, 5] and the refer-
ences therein for more geometric and topological properties of F . Of these known
properties of F , only the point (3) above ensures that F is minimal for conformal
dimension. In fact, for any d ≥ 1, there exists a set A ⊆ Rd with λd(A) = 1 and
CdimH A = 0, where λd denotes the d-dimensional Lebesgue measure; see [15, 18].
Our first main result demonstrates that regardless of the speed of convergence, fat
fractal percolation is almost surely minimal for conformal dimension.

Theorem 2.1. Let N ≥ 2. For any sequence p = (pn)n∈N such that limn→∞ pn =
1, we have

CdimH F = dimH F = d,

almost surely conditioned on the non-extinction of F = F (N,p).

2.2. Dense fractal percolation. Another natural variant of the fractal percola-
tion is constructed as follows: Let 0 < p < 1 and N = (Nn)n be a sequence of
integers with Nn ≥ 2 for all n. Construct a random set E = E(N, p) ⊆ [0, 1]d as
follows: Divide the cube [0, 1]d into Nd

1 congruent subcubes, retain each one with
probability p and discard it with probability 1 − p. Denote the set of surviving
cubes by E1. For n ≥ 0 and a set En of surviving subcubes as above, we define the
set En+1 by repeating the above procedure for each cube in En, with the parameter
N1 replaced by Nn+1, and let En+1 denote the set of all surviving subcubes of side

length
∏n+1

k=1 N
−1
k obtained this way. Finally, we set

E =
⋂
n∈N

⋃
Q∈En

Q ⊆ Rd

and call the set E the (N, p)-fractal percolation; again see Figure 1. If the sequence
(Nn)n is increasing, we call the set E a (N, p)-dense fractal percolation.

Question 2. Let 0 < p < 1. For which sequences N is the (N, p)-fractal percolation
minimal for conformal dimension with positive probability?

It turns out that the major difference between the dense and the fat fractal
percolation is that the former may contain, at many construction levels, holes,
whose size is much larger than the cubes at the next level of the construction.
This causes some technical difficulties in adapting the proof of Theorem 2.1 to this
setting. In particular, we were only able to prove that the Hausdorff dimension of
the dense fractal percolation cannot be lowered by power quasisymmetries. This is
our second main result.

Theorem 2.2. Let p > 0, N = (Nn)n∈N ⊂ N be an increasing sequence and E =
E(N, p) be the corresponding dense fractal percolation. Almost surely conditioned
on the non-extinction of E, we have

dimH f(E) = dimH E = d,

for any power quasisymmetry f : E → f(E).

2.3. On the proofs. The proofs of Theorems 2.1 and 2.2 follow a similar idea, with
the proof of Theorem 2.2 being somewhat more involved. A substantial portion of
the work is done in a deterministic setting, and Theorems 2.1 and 2.2 follow from
the deterministic results by showing that realizations of the percolation processes
almost surely, conditioned on non-extinction, contain suitable deterministic subsets.
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The key phenomenon we exploit in the proof of Theorem 2.1 is that even
though the Hausdorff dimension of a given set can often be decreased by enlarg-
ing the “holes” in the set at all scales by a properly chosen quasisymmetry, an
η-quasisymmetry for a fixed η cannot enlarge small holes by too much. An illus-
trating example is the following: While any set E ⊂ [0, 1] with dimH E < 1 has
conformal dimension 0, for any fixed distortion function η and any 0 < s < 1,
there exists a set E ⊂ [0, 1] with dimH E < 1, such that dimH f(E) ≥ s for any
η-quasisymmetry f : E → f(E), see Proposition 3.4.

Similarly, the proof of Theorem 2.2 relies on finding suitable thick enough subsets
in the dense fractal percolation. It turns out that with a very large probability, the
largest hole in a level n cube Q in the dense fractal percolation is no larger than
logNn+1

Nn+1
in relative size. These holes are small enough, that we get nice estimates

on the the image of E ∩Q under a quasisymmetry f at many scales between levels
n and n+1, see Lemma 3.6. For power quasisymmetries, we get additional control
on the remaining scales, which is enough to show that the Hausdorff dimension
cannot be lowered by f . The deterministic results we need are proved in Section 3.

To show that the fat and dense fractal percolations contain suitable deterministic
subsets with probability one, in Section 4 we adapt results on the existence of k-ary
subtrees inside Galton-Watson trees from [4, 13]. The proofs of Theorems 2.1 and
2.2 are then finished in Section 5.

2.4. Notation. We denote the diameter of a subset A of a metric space by |A|. We
leave the dependence on the metric, which should be clear from the context, implicit.
The distance between sets A and B is denoted by dist(A,B) := inf{d(x, y) : x ∈
A, y ∈ B}. If E ⊂ R2, f : E → f(E) is a mapping into an arbitrary metric space
and Q ⊂ R2, we often write f(Q) for f(Q ∩ E) to slightly simplify notation. If
A is any collection of subsets of a metric space X and B ⊂ X, we let A(B) =
{A ∈ A : A ⊂ B}. Given a set A and functions f, g : A → R, we write f ≲ g if
there exists a constant C, such that f(a) ≤ Cg(a) for all a ∈ A. Similarly, we
write f ≳ g if g ≲ f . Often A = N and the constant C may depend on all other
quantities except for the indices a ∈ N. Finally, we let π : Rd → Rd−1 denote the
orthogonal projection to the first d− 1 coordinates.

3. Fat and dense Cantor sets

In this section we study quasisymmetric mappings on two slightly different but
related classes of deterministic fractals: fat Cantor sets and dense Cantor sets. An
observant reader might conjecture that these have something to do with fat and
dense fractal percolations, and they would be correct. Indeed, in Section 5 the
proofs of our main results lean on showing that almost all realizations of fat and
dense fractal percolations contain large fat and dense Cantor sets, respectively.

Let us record two simple but crucial lemmas, starting with [11, Theorem 2.5].

Lemma 3.1. Let f : X → Y be a η-quasisymmetry. If A ⊆ B ⊆ X are sets with
0 < |A| ≤ |B| < ∞, then |f(B)| < ∞ and

2−1η

(
|B|
|A|

)−1

≤ |f(A)|
|f(B)|

≤ η

(
2
|A|
|B|

)
.

An application of this lemma gives the following variant, which is useful if X
only contains relatively small gaps, i.e. if |A ∪B| ≈ |A| ≈ |B|.
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Lemma 3.2. Let f : X → Y be a η-quasisymmetry and let A,B ⊂ X be compact.
Then

dist(f(A), f(B))

|f(A) ∪ f(B)|
≤ η

(
2
dist(A,B)

|A ∪B|

)
.

We also record the following variant, which will prove useful when the gaps in
X are relatively large, but uniformly distributed.

Lemma 3.3. Let f : X → Y be a η-quasisymmetry. Let A,B ⊂ X be non-empty
and compact and assume that |B| ≤ |A|. Then

dist(f(A), f(B))

|f(A)|
≤ 1 + η

(
2 +

dist(A,B)

|A|

)
.

Proof. Using compactness, choose x, y ∈ A satisfying d(x, y) = |A| and x′ ∈ A,
z ∈ B satisfying ρ(f(x′), f(z)) = dist(f(A), f(B)). Then

dist(f(A), f(B))

|f(A)|
≤ ρ(f(x′), f(x)) + ρ(f(x), f(z))

|f(A)|
≤ 1 +

ρ(f(x), f(z))

ρ(f(x), f(y))

≤ 1 + η

(
d(x, z)

d(x, y)

)
≤ 1 + η

(
|A|+ |B|+ dist(A,B)

|A|

)
≤ 1 + η

(
2 +

dist(A,B)

|A|

)
.

□

3.1. Fat Cantor sets. In this section, we study quasisymmetries on fat Cantor
sets. These sets have a very uniform structure: they only contain relatively small
and uniformly distributed holes at all scales. The sets will play a crucial role in
the proof of Theorem 2.2 in Section 5, where we will be able to find large copies of
them inside typical realizations of the fat fractal percolation process.

The construction goes as follows: Divide the unit square [0, 1]d into Nmd con-
gruent subcubes of side length N−m, remove one of them arbitrarily, and call the
collection of retained subcubes F1. Given Fn for n ≥ 0, divide each cube of Fn

into Nmd congruent subcubes and again remove one of them. Call Fn+1 the family
of all retained subcubes of each cube of Fn, and define the (N,m)-fat Cantor set
F by setting

F =
⋂
n≥0

⋃
Q∈Fn

Q.

For n < m, and Q ∈ Fn, we let

Fm(Q) = {Q′ ∈ Fm : Q′ ⊂ Q}.

Proposition 3.4. Let η be a distortion function and 0 < α < d. Then for any
large enough m ∈ N, any (N,m)-fat Cantor set F and any η-quasisymmetry f :
F → f(F ), we have

dimH f(F ) ≥ α.

Proof. Let η be a distortion function and 0 < α < d. Our first aim is to show that
there exists m = m(η, α), such that the following holds: If F is a (N,m)-fat Cantor
set and f : F → f(F ) is an η-quasisymmetry, then for any n ∈ N and Q0 ∈ Fn, we
have

(1) |f(Q0)|α ≤
∑

Q∈Fn+1(Q0)

|f(Q)|α.
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Let m be a natural number which we will make larger when necessary. Let F be
a (N,m)-fat Cantor set and fix Q0 ∈ Fn. To simplify notation, we write Fn+1 =
Fn+1(Q0). Consider Rd−1 as the subspace of Rd spanned by the first d− 1 vectors
from the natural basis of Rd and let π : Rd → Rd−1 denote the orthogonal projection
from Rd onto Rd−1. We adopt the convention R0 = {0}. Define

Qd−1
n+1 = {π(Q) : Q ∈ Fn+1},

which is a collection of N (n+1)m-adic cubes in Rd−1. Since #Fn+1 = Ndm − 1, we
have that #Qd−1

n+1 = Nm(d−1). For each D ∈ Qd−1
n+1, let

Fn+1(D) = {Q ∈ Fn+1 : π(Q) = D}.

Now let us fix D ∈ Qd−1
n+1 and enumerate Fn+1(D) = {Q1, . . . , Qk} in an ascend-

ing order, where k is either Nm or Nm − 1. Notice that for all large enough m, we

have |
⋃k

i=1 Qi ∩ F | ≥ 1
2N

−nm and therefore

|
⋃k

i=1 f(Qi)|
|f(Q0)|

≥ 1

2
η

(
|Q0 ∩ F |

|
⋃k

i=1 Qi ∩ F |

)−1

≥ 1

2
η(2)−1.

For large enoughm, we see from the definition of the (N,m)-fat Cantor set that ifQi

and Qi+1 are adjacent cubes in Fn+1(D) then dist(Qi∩F,Qi+1∩F ) ≤ 4N−(n+2)m,
except when there is a missing cube of level (n + 1)m between Qi and Qi+1, in
which case dist(Qi ∩F,Qi+1 ∩F ) ≤ 4N−(n+1)m. Since the second case is the worst
case scenario, we will assume that there is an index 1 < j < k, where the second
case happens. Since η is increasing and |(Qi ∪Qi+1)∩F | ≥ N−(n+1)m, we have by
Lemma 3.1 that

dist(f(Qi), f(Qi+1))

|f(Qi) ∪ f(Qi+1)|
≤ η

(
2
dist(Qi ∩ F,Qi+1 ∩ F )

|(Qi ∪Qi+1) ∩ F |

)
≤ η(8N−m) ≤ η(16N−m),

for all i ̸= j and similarly, since |Q0 ∩ F | ≥ 1
2N

−mn,

dist(f(Qj), f(Qj+1))

|f(Q0)|
≤ η

(
2 dist(Qj ∩ F,Qj+1 ∩ F )

|Q0 ∩ F |

)
≤ η(16N−m).

By noticing that |f(Qi) ∪ f(Qi+1)| ≤ |f(Qi)| + |f(Qi+1)| + dist(Qi, Qi+1) for all
i = 1, . . . , k, if we take m large enough so that η(16N−m) ≤ 1

2 , we have

|f(Qi) ∪ f(Qi+1)| ≤ 2(|f(Qi)|+ |f(Qi+1)|),

for all i ̸= j. Now we use the fact that
∣∣∣⋃ℓ

i=1 Ai

∣∣∣ ≤ ∑ℓ−1
i=1 |Ai ∪ Ai+1| for any

collection of sets {Ai} so in particular

1

2
η(2)−1|f(Q0)| ≤

∣∣∣∣∣
j⋃

i=1

f(Qi)

∣∣∣∣∣+
∣∣∣∣∣∣

k⋃
i=j+1

f(Qi)

∣∣∣∣∣∣+ dist(f(Qj), f(Qj+1))

≤
j−1∑
i=1

|f(Qi) ∪ f(Qi+1)|+
k−1∑

i=j+1

|f(Qi) ∪ f(Qi+1)|+ η(16N−m)|f(Q0)|

≤ 4

k∑
i=1

|f(Qi)|+
1

4
η(2)−1|f(Q0)|,
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where we take m larger if necessary to make sure that η(16N−m) ≤ 1
4η(2)

−1. In

other words, for any D ∈ Qd−1
n+1, we have

(2) |f(Q0)| ≤ cη
∑

Q∈Fn+1(D)

|f(Q)|,

where cη = 16η(2).
Let now 0 < α < d. Since∑

D∈Qd−1
n+1

∑
Q∈Fn+1(D)

|f(Q)| =
∑

Q∈Fn+1

|f(Q)|,

by (2) and Hölder’s inequality, we get

Nm(d−1)|f(Q0)| ≤ cη
∑

Q∈Fn+1

|f(Q)| ≤ cη

 ∑
Q∈Fn+1

|f(Q)|α
 1

α

N
dm(α−1)

α .

Therefore

|f(Q0)|α ≤ cαηN
m(α−d)

∑
Q∈Fn+1

|f(Q)|α,

and since cαηN
m(α−d) → 0 as m → ∞, (1) follows.

Now our aim is to define a measure µ on f(F ) such that for any n ∈ N and
Q ∈ Fn,

µ(f(Q)) ≤ |f(Q)|α.

This will be enough to prove the claim, since it is easy to see that using standard
methods, see e.g. [8, Lemma 4.5], that µ is an α-Frostman measure on f(F ) and
therefore dimH f(F ) ≥ α.

Let µ(f(F )) = 1, and for each n ∈ N and Qn ∈ Fn, define

(3) µ(f(Qn)) =
|f(Qn)|α∑

Q∈Fn+1(Q∗) |f(Q)|α
µ(f(Q∗))

where Q∗ ∈ Fn−1 is the unique cube containing Qn. By Caratheodory’s extension
theorem, this defines a probability measure µ on f(F ).

Now for any Qn ∈ Fn, if Qℓ ∈ Eℓ, ℓ = 0, . . . , n − 1 are the unique cubes such
that Qn ⊆ Qn−1 ⊆ · · · ⊆ Q0 = [0, 1]d, we have

µ(f(Qn))

|f(Qn)|α
=

n∏
ℓ=1

|f(Qℓ−1)|α∑
Q∗∈Fn+1(Qℓ−1)

|f(Q∗)|α
.

It follows from (1) that

n∏
ℓ=1

|f(Qℓ−1)|α∑
Q∗∈Fn+1(Qℓ−1)

|f(Q∗)|α
≤ 1,

which finishes the proof □
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3.2. Dense Cantor sets. In this section, we modify the results of the previous
section for a related class of fractals we call dense Cantor sets. The idea is similar to
the construction of fat Cantor sets, but the uniformly distributed holes in these sets
are allowed to be much larger compared to the size of the cubes in the construction,
and in particular, the ratio of the size of the holes to the size of the construction
cubes is allowed to grow to infinity at a controlled rate. Unfortunately, for precisely
this reason, we are only able to extend Proposition 3.4 for power quasisymmetries
in this setting.

Let (Nn)n be an increasing sequence of integers and assume that N1 ≥ 2. For
simplicity we assume that Nn = 2kn are dyadic, where kn is an increasing sequence
of integers. LetQ1 denote the partition of the unit square Q0 ⊂ Rd to Nd

1 congruent
subcubes of side length N−1

1 . Let E1 ⊂ Q1 denote an arbitrary subcollection of the
cubes. Divide each cube Q ∈ E1 to Nd

2 congruent subcubes of side length N−1
1 N−1

2 ,
choose an arbitrary sub collection denoted by E2(Q) and let E2 =

⋃
Q∈E1

E2(Q).
Continue this process indefinitely and let

E =

∞⋂
k=1

⋃
Q∈Ek

Q.

For a sequence (∆n)n∈N with ∆n > 0, we call a set E as above a (∆n)n-dense
Cantor set if for all large enough n ∈ N and every Q ∈ En,

(4) sup
{
|A| : A ⊂ Q \

⋃
En+1 is a line segment parallel to

}
≤ ∆n+1|Q|.

Recall that here π : Rd → Rd−1 denotes the orthogonal projection to the first d− 1
coordinates. Informally, (4) means that the union of descendants of Q contains
no “vertical” gaps of diameter ∆n+1|Q|. In this section, we prove the following
proposition.

Proposition 3.5. Let E ⊂ Rd be a
(

logNn

Nn

)
n
-dense Cantor set and let f : E →

f(E) be a power quasisymmetry. Then

dimH f(E) = d.

This will follow by constructing for each 0 < α < d a Frostman measure on f(E)
similarly as in the proof of Proposition 3.4, once we establish a suitable analogue
of (1). There are additional technical difficulties in this setting compared to the
setting of the previous section, mainly arising from the fact that we have no control
over the difference between two scales that follow each other in the construction.
This is a technical problem in the construction of the Frostman measure, since we
want to control the measure of cubes at all scales, not just at the construction
scales. However, if the cubes at level n + 1 of the construction are much smaller
than the cubes at level n, the gaps between adjacent level n + 1 cubes are small
enough so that we can establish (1) on a large number of scales between levels n
and n+ 1. This is the content of the following lemma.

Lemma 3.6. Let η be a distortion function, 0 < α < d and E be a
(

logNn

Nn

)
n
-dense

Cantor set. Let f : E → f(E) be an η-quasisymmetry. Then for any 0 < γ < 1, for
all large enough n, if Q ∈ Dk(E) with

∑n
m=1 km ≤ k <

∑n
m=1 km + γkn+1, then

|f(Q)|α ≤
∑

Q′∈Dk+1(E∩Q)

|f(Q′)|α.
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Proof. Fix β > 0, 0 < α < d and let 0 < γ < 1. Let E ⊂ Rd be a
(

logNn

Nn

)
n
-dense

Cantor set and let Q ∈ Dk, where
∑n

m=1 km ≤ k <
∑n

m=1 km + γkn+1. Let

Q′
k+1(Q) = {π(Q) : Q ∈ Dk+1(E ∩Q)}.

Let D ∈ Q′
k+1(Q) and let {Q1, . . . , QM} denote the enumeration of Ek+1(D) :=

{Q ∈ Dk+1(E ∩ Q) : π(Q) = D} in ascending order. It follows from (4) and the
assumption on k that

dist(Qi ∩ E,Qi+1 ∩ E) ≤ logNn+1

Nn+1
2−

∑n
m=1 km ≤ 2d

logNn+1

N1−γ
n+1

|Qi| ≤
1

2
|Qi|.

Moreover, it follows from (4) with ∆n = logNn/Nn that for all large enough n, we
have

|Qi ∩ E| ≥ 1

2
|Qi|.

Combining the previous two inequalities and applying Lemma 3.3, we have for all
large enough n, that

|f(Q)| =

∣∣∣∣∣
M⋃
i=1

f(Qi)

∣∣∣∣∣ ≤
M∑
i=1

|f(Qi)|+
M−1∑
i=1

dist(f(Qi), f(Qi+1))

≤

(
2 + η

(
2 + 4

logNn

N
(1−γ)
n+1

))
M∑
i=1

|f(Qi)| ≤ 3η(3)
∑

Q′∈Ek+1(D)

|f(Q′)|.(5)

Note that ∑
D∈Q′

k+1(Q)

∑
Q′∈Ek+1(D)

|f(Q)| =
∑

Q′∈Dk+1(Q∩E)

|f(Q′)|,

and by again using (4) and our assumption on k, #Q′
k+1(Q) = 2(d−1)k. If α < d =

1, then it follows from (5) and Lemma 3.1 that

|f(Q)|α ≤ 3η(3)
∑

Q′∈Dk+1(Q∩E)

|f(Q′)|α ·
(
|f(Q′)|
|f(Q)|

)1−α

≤ 3η(3)η(2N−1
k+1)

1−α
∑

Q′∈Dk+1(Q∩E)

|f(Q′)|α

which proves the claim since Nk+1 → ∞ as n → ∞. If 1 < α < d, then applying
Hölder’s inequality in addition to (5) we get

2(d−1)k|f(Q)| ≤ 3η(3)
∑

Q′∈Dk+1(Q∩E)

|f(Q′)|

≤ 3η(3)

 ∑
Q′∈Dk+1(Q∩E)

|f(Q′)|α
 1

α

2
dk(α−1)

α

which implies

|f(Q)|α ≤ 3αη(3)α2(α−d)k
∑

Q′∈Dk+1(Q∩E)

|f(Q)|α.

Since α < d and k → ∞ as n → ∞, we get the claim. □
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Note that we did not require f to be a power quasisymmetry in the previous
lemma. This assumption comes into play when we want to control the measures of
cylinders at scales

∑n
m=1 km + γkn+1 < k <

∑n+1
m=1 km.

Proof of Proposition 3.5. As in the proof of Proposition 3.4, it suffices to find for
for all 0 < α < d, a measure µ on f(E), which satisfies µ(f(Q)) ≲ |f(Q)|α, for all
Q ∈ D(Q).

Let 0 < α < t < d, and let t
t+(t−α)β2 < γ < 1. Let n0 be large enough, such that

Lemma 3.6 holds with the exponent t, for all Q ∈ Dk(E) with
∑n

m=1 km ≤ k <

γ
∑n+1

m=1 km and n ≥ n0. Take Q0 ∈ D∑n0
m=1 km

(E) and let µ(f(Q0)) = 1. Construct

a measure on µ(f(Q0)) by setting for each Q ∈ Dk(Q0) with
∑n0

m=1 km < k <∑n0

m=1 km + γkn0+1,

(6) µ(f(Q)) =
|f(Q)|t∑

Q∈Dk+1(Q∗∩E) |f(Q)|t
µ(f(Q∗))

where Q∗ ∈ Dk−1 is the unique cube containing Q. After this, for Q ∈ D∑n0+1
m=1 km

,

we set

(7) µ(f(Q)) =
|f(Q)|t∑

Q∈D∑n0+1
m=1 km

(Q∗∩E) |f(Q)|t
µ(f(Q∗)),

where Q∗ ∈ Dk′
0
is the unique cube containing Q and k′0 is the largest integer

smaller than
∑n0

m=1 km + γkn+1. Continue dividing mass with this process: for

every ℓ ∈ N, distribute mass on Q ∈ Dk for
∑n0+ℓ

m=1 km < k <
∑n0+ℓ

m=1 km+γkn0+ℓ+1

as in (6) and then skip to scale
∑n0+ℓ+1

m=1 km and use (7). We now claim that for
any k ≥

∑n0

m=1 km and Q ∈ Dk(Q0), we have

(8) µ(f(Q)) ≤ |f(Q)|α.

If Q ∈ Dk for some
∑n0+ℓ

m=1 km ≤ k <
∑n0+ℓ

m=1 km + γkn0+ℓ+1 and ℓ ∈ N, then (8)
indeed holds with t in place of α (and thus in particular with the exponent α), with
the same argument as in the proof of Proposition 3.4.

It remains to prove (8) forQ ∈ Dk with
∑n0+ℓ

m=1 km+γkn0+ℓ+1 < k ≤
∑n0+ℓ+1

m=1 km
and ℓ ∈ N. Let Q1 ∈ Dk′ be the unique cube satisfying Q ⊂ Q1, where k′ is the

largest integer smaller than
∑n0+ℓ

m=1 km + γkn0+ℓ+1. Since |Q| ≥ 2−
∑n0+ℓ+1

m=1 km ,
Lemma 3.1 asserts that

µ(f(Q)) ≤ |f(Q1)|t ≲ η

(
2−

∑n0+ℓ
m=1 km−γkn0+ℓ+1

2−
∑n0+ℓ+1

m=1 km

)t

|f(Q)|t

≲ N
t(1−γ)

β

n0+ℓ+1|f(Q)|t.
Furthermore, Lemma 3.1 also implies that

(9) |f(Q)| ≲ |f([0, 1]d)|N−γβ
n0+ℓ+1,

whence
|f(Q)|α−t ≳ N

γβ(t−α)
n0+ℓ+1 .

Since γ > t
t+(t−α)β2 , the preceding inequalities give

µ(f(Q)) ≲ |f(Q)|α−t|f(Q)|t = |f(Q)|α,
finishing the proof. □
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4. Branching processes

In this section, we describe the probabilistic framework which allows us to find
large subsets of the fractal percolations. Whereas the offspring distribution of
the classical fractal percolation model follows a simple Galton-Watson process, we
require a more general framework.

For every n ∈ N, let us fix a finite index set Γn, with #Γn = Nn, and denote
by Pn the set of all probability measures supported on the collection of subsets of
Γn. Our standing assumptions are that (Nn)n∈N is a non-decreasing sequence of
integers and N1 ≥ 2. We define a branching process as follows. Start with a root
node ∅ and pick an arbitrary probability measure η∅ ∈ P1. Generate children for
∅ by drawing a random subset Γ∅ ⊂ Γ1 with respect to η∅. For each i ∈ Γ∅ pick a
probability measure ηi ∈ P2 and draw a subset Γi ⊂ Γ2 with respect to ηi. Continue
this process iteratively: for every i := i1i2 · · · in ∈ Γ∅ ×Γi1 ×Γi1i2 × . . .×Γi1···in−1

and j ∈ Γi, pick a probability measure ηij ∈ Pn+1 and draw a random subset
Γij ⊂ Γn+1 with respect to ηij . An alternative way to view the process is to start
by fixing an arbitrary collection of probability measures

H :=

∞⋃
k=0

{ηi1···ik ∈ Pk : i1 ∈ Γ1, . . . , ik ∈ Γk},

and running the process described above for this fixed collection. For a fixed H we
call

T (H) := {i1i2 · · · ∈ Γ1 × Γ2 × · · · : ik ∈ Γi1···ik−1
∀k ∈ N},

the family tree of the branching process. Given a sequence pn with 0 < pn < 1 for
all n, we call the tree T (H) (pn)n-thick if, for all n,

(10) Pi1···in(#Γi1···in = Nn+1) ≥ pn

where Pi1···in is the law of #Γi1···in . In our applications, the collection of probability
measures H is left implicit, and since the definition of (pn)n-thickness only depends
on the laws Pi1···in , going forward, we suppress the dependence on H from the
notation and instead, call a tree T (pn)n-thick if for each i1 · · · in, the law Pi1···in
satisfies (10).

We say that the tree T contains a (Nn − 1)n-subtree if for all i1i2 · · · ∈ T and
n = 0, 1, . . .,

#Γi1···in ≥ Nn+1 − 1,

that is, all nodes of level n have at least Nn+1 − 1 children. The following result,
which is a generalization of [10, Theorem 5.29], is the main result of this section.

Theorem 4.1. If T is (1 − N−6
n )n-thick, then there exists p0 > 0 depending only

on (Nn)n∈N such that

P(T contains a (Nn − 1)n-subtree) ≥ p0.

Proof. Consider a random process where we mark each child of a node i of level
n independently, and the probability of marking any given child is at least 1 − s.
Since T is (1−N−6

n )n-thick, the probability that i has at most Nn+1 − 2 marked
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children is at most
Nn+1∑
k=0

Pi(#Γi = k)

Nn+1−2∑
j=0

(
k

j

)
(1− s)jsk−j

≤
Nn+1−1∑

k=0

N−6
n+1

k∑
j=0

(
k

j

)
(1− s)jsk−j +

Nn+1−2∑
j=0

(
Nn+1

j

)
(1− s)jsNn+1−j

≤
Nn+1−2∑

j=0

(
Nn+1

j

)
(1− s)jsNn+1−j +N−5

n+1

= 1− (1− s)Nn+1 −Nn+1s(1− s)Nn+1−1 +N−5
n+1 =: gn+1(s).

Let qn denote the probability that T does not contain a (Nn − 1)n-subtree of
height n, and τ := limn→∞ 1− qn the probability that T contains a full (Nn − 1)n-
subtree. By marking a child of ∅ if it is retained, we see using the above that
q1 ≤ g1(0). Furthermore, by marking a child of ∅ if it has at least N2 − 1 children,
we have q2 ≤ g1(g2(0)). By iterating this process—marking a child of ∅ if it has at
least N2 − 1 children which have at least N3 − 1 children, and so on—with similar
reasoning we have

qn ≤ g1 ◦ g2 ◦ · · · ◦ gn(0).
It remains to show that there exists a constant c < 1, such that g1◦g2◦· · ·◦gn(0) ≤ c,

for all n ∈ N. Simple computations show that g′k(0) = 0, g
(ℓ)
k (0) ≤ N ℓ+1

k for

2 ≤ ℓ ≤ Nk and g
(ℓ)
k (0) = 0 for ℓ > Nk. Thus by Taylor’s theorem at 0, for any

k ∈ N and s ∈ [0, N−1
k /2),

(11) gk(s) ≤ N−5
k +Nk

Nk∑
ℓ=2

(Nks)
ℓ ≤ N−5

k + 2N3
ks

2.

We now claim that

gk ◦ gk+1 ◦ . . . ◦ gn(0) ≤ 4N−5
k ,

for all k = 1, . . . , n. This follows by induction starting from k = n, since clearly
gn(0) = N−5

n ≤ 4N−5
n , and if

gk+1 ◦ gk+2 ◦ . . . ◦ gn(0) ≤ 4N−5
k+1,

then by (11),

gk ◦ gk+1 ◦ . . . ◦ gn(0) ≤ N−5
k + 8N3

kN
−10
k+1 ≤ 4N−5

k .

Since N1 ≥ 2, this gives the claim with c = 1
8 . □

5. Proofs of Theorems 2.1 and 2.2

In this section we prove our main results. When we say that a set E ⊂ Rd

contains a set A, we mean that there exists a homothety h : R2 → R2, such that
h(A) ⊂ E. Combined with results of Section 3.1, the following result will yield a
proof for Theorem 2.1.

Theorem 5.1. Let p := (pn)
∞
n=0 be such that limn→∞ pn = 1. Then for any

m ∈ N, the set F (N,p) contains a (N,m)-fat Cantor set, almost surely conditioned
on non-extinction.
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Proof. Let F = F (N,p). Notice first that for a fixed m ∈ N, it suffices to show
that there exists p0 > 0, such that for any large enough n ∈ N, and any N -adic
cube Q0 of level n,

(12) P(F ∩Q0 contains a (N,m)-fat Cantor set
∣∣ Q0 ∈ Fn) ≥ p0.

This can be seen to imply the claim, for example, by a simple application of
Markov’s inequality and the Borel-Cantelli lemma, see e.g. [17, Lemma 3.1]

Fix an integer m ∈ N and let ε > 0 and let n ∈ N be large enough, such that
m∏
ℓ=1

pN
ℓd

n+k+ℓ−1 ≥ 1−N−6md,

for all k ∈ N. Consider a branching process with a root node Q0 ∈ Fn and children
Fn+m(Q0). For each Q ∈ Fn+m(Q0) we consider the cubes in Fn+2m(Q) the
children of Q and denote the tree obtained by iterating this process with T (Q0).
Evidently F ∩ Q0 contains a (N,m)-fat Cantor set if and only if the tree T (Q0)
contains a complete Nmd−1-ary subtree. Since for any k ∈ N and Q ∈ Fn+km(Q0),

P(#Fn+(k+1)m(Q0) = Nm) =

m∏
ℓ=1

pN
ℓd

n+km+l−1 ≥ 1−N−6md,

the tree T (Q0) is (1−N−6md)-thick, and (12) follows from Theorem 4.1. □

The following corollary is immediate.

Corollary 5.2. For any p = (pn)n∈N such that limn→∞ pn = 1, almost surely
conditioned on non-extinction, the set Ep contains a (N,m)-fat Cantor set for all
m ∈ N.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let F = F (N,p) be a realization of the fat fractal percola-
tion with a sequence of probabilities p = (pn)n∈N satisfying limn→∞ pn = 1, which
contains a (N,m)-fat Cantor set for all m ∈ N. By the previous corollary, condi-
tioned on non-extinction, this is an event of probability one. Let η be a distortion
function, 0 < α < d and f : F → f(F ) be a η-quasisymmetry. Let m ∈ N be large
enough, such that Proposition 3.4 holds for the (N,m)-fat Cantor set Fm ⊂ F .
Since f |Fm is an η-quasisymmetry, Proposition 3.4 gives

dimH f(F ) ≥ dimH f(Fm) ≥ α,

which gives the claim by taking α → d. □

Let us proceed to the proof of Theorem 2.2. We will use the following analogue
of Theorem 5.1, which immediately implies Theorem 2.2 by Proposition 3.5.

Theorem 5.3. Let p > 0 and N = (Nn)n be an increasing sequence of natural
numbers. There exists a constant C > 0 such that almost surely conditioned on

non-extinction, the set E(N, p) contains a
(
C logNn+k

Nn+k

)
k
-dense Cantor set for some

n ∈ N.

Proof. Again, we note that it suffices to show that there exists C, p0 > 0, such that
for any large enough n ∈ N and any cube Q0 with side length

∏n
m=1 N

−1
m ,

P(E ∩Q0 contains a
(
C logNn+k

Nn+k

)
k
-dense Cantor set

∣∣ Q0 ∈ En) ≥ p0.
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Let us denote by log the logarithm in base (1 − p)−1. Choose a surviving cube
Q0 ∈ En, and consider the following branching process conditional on Q0 ∈ En.

Set Q0 as the root node of the branching process, and retain Q0 if

sup
{
|A| : A ⊂ Q0 \

⋃
En+1 is a line segment parallel to kerπ

}
≤ 6d logNn+1

Nn+1
|Q0|,(13)

and otherwise discard Q0. Informally, Q0 is retained if any only if there is no “ver-
tical” block of 6dlogNn+1-many cubes removed from Q0 in the next construction
step of E. If Q0 is retained, let E ′

1 := {Q ∈ En+1 : Q ⊂ Q0} denote the descendants
of Q0.

For each k > 1 with E ′
k−1 defined, for each cube Q ∈ E ′

k−1 we repeat the process,

that is, retain Q if and only if no “vertical” block of 6dlogNn+k-many cubes is
removed from Q0 in the next construction step, that is,

sup
{
|A| : A ⊂ Q \

⋃
En+k is a line segment parallel to kerπ

}
≤ 6d logNn+k

Nn+k
|Q|.(14)

Denote the descendants of Q by E ′
k(Q) = {Q′ ∈ En+k : Q′ ⊂ Q}. By trimming

the collections E ′
k(Q) for every Q ∈ Ek−1 while retaining the property (14) and

replacing 6 by 13, we may suppose that #E ′
k(Q) is constant, denoted by Mk. Note

that as a formal consequence of (14), we may do the trimming in a way that

Nd−1
n+k

Nn+k

6dlogNn+k
≤ Mk ≤ 2Nd−1

n+k
Nn+k

6dlogNn+k
, in particular, (Mk)k∈N is non-decreasing

once n is large enough. Let E ′
k =

⋃
Q∈E′

k−1
E ′
k(Q). Having defined E ′

k for every k > 1

in this way, let

E′ =
⋂
k>1

⋃
Q∈E′

k

Q.

Next we observe that conditioned on E ′
k for k > 1, the probability that Q ∈ E ′

k is

not retained (that is, (14) fails and a “vertical” block of at least 6dlogNn+k+1-many
cubes is removed from Q) is at most

Nd
n+k+1(1− p)6dlogNn+k+1 ≤ N−5d

n+k+1 ≤ M−5
n+k+1

Therefore the family tree of the branching process which defines E′ is (1−M−5
n+k+1)k∈N-

thick and thus contains a (Mk − 1)k-subtree with probability at least p0 > 0
by Theorem 4.1. We denote the subset of E′ corresponding to this subtree by
E′′ =

⋂
k>1

⋃
Q∈E′′

k
Q. Since the sets E ′′

k are formed by removing at most one cube

from each set {Q ∈ E ′
k : Q ⊂ Q′}, Q′ ∈ E ′

k−1, it follows that for each k > 1 and

Q ∈ E ′′
k , no “vertical” block of 26d logNn+k+1 + 1-many cubes is removed from Q

in the next construction step, that is,

sup
{
|A| : A ⊂ Q \

⋃
E ′′
n+k+1 is a line segment parallel to kerπ

}
≤ 26d logNn+k+1 + 1

Nn+k+1
|Q| ≤ 27d logNn+k+1

Nn+k+1
|Q|.

In particular, the set E′′ is a (27dlogNn+k

Nn+k
)k-dense Cantor set. This proves the

statement with C = −27d log(1− p). □
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