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Abstract. We quantify the pointwise doubling properties of self-similar measures
using the notion of pointwise Assouad dimension. We show that all self-similar
measures satisfying the open set condition are pointwise doubling in a set of full
Hausdorff dimension, despite the fact that they can in general be non-doubling in a
set of full Hausdorff measure. More generally, we carry out multifractal analysis
by determining the Hausdorff dimension of the level sets of the pointwise Assouad
dimension.

1. Introduction

In analysis and geometry, one often encounters situations where indirect information
about size and structure is obtained by comparing a family of balls to the family
obtained by the dilations of the balls by a certain ratio. The classical 5R-covering
theorem is a prototype case: One can extract a packing from an arbitrary collection of
balls which still covers the collection after dilating the radii by a uniform constant. For
measures, analogous and often finer tools are available through the use of Vitali type
covering theorems, which are on the other hand intimately related to the doubling
properties of the measure.

A Borel measure µ supported on a metric space X, and assigning finite measure to
bounded sets, is doubling, if there is a constant C > 0 such that for any x ∈ X and
r > 0, we have

(1.1) µ(B(x, 2r)) ⩽ Cµ(B(x, r)) < ∞,

where B(x, r) is the closed ball of radius r > 0 and center x. This condition is a
regularity requirement which, in many cases, streamlines analysis on X. For instance,
the above mentioned Vitali covering theorem, and hence the Lebesgue differentiation
theorem hold for all doubling measures [15] providing a natural framework e.g. for
harmonic analysis and analysis on metric spaces, see [28, 15, 23, 16, 4]. For finer
analysis, the global condition (1.1) is often insufficient since most measures are not
doubling and even if µ is doubling the estimate (1.1) will most likely be sub-optimal
for some/many/typical x ∈ X.
For a finer study of the doubling properties of measures, we say that a measure

µ is (pointwise) doubling at x ∈ X, if there is some 0 < C(x) < ∞ such that
µ(B(x, 2r)) ⩽ C(x)µ(B(x, r)) < ∞ for all r > 0. This is easily seen to be equivalent
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to the condition that for all γ > 1,

(1.2) Cγ(x) := inf
r>0

µ(B(x, γr))

µ(B(x, r))
< ∞ .

A doubling measure is pointwise doubling at all points of its support but the converse
need not be true, as pointed out for example in [1, Example 3.3]. Relaxing the global
doubling condition to the condition that µ is pointwise doubling at µ-almost every x
is enough e.g. for the Vitali covering theorem to hold [16, Theorem 3.4.4] so much of
analysis can be carried out in this larger class of metric measure spaces. This also
motivates the following general question: What is the size of the set where a given
measure µ is pointwise doubling?

The goal of this paper is to answer the previous question and conduct a fine analysis
of the doubling properties for self-similar measures, where the defining iterated
function system satisfies the open set condition (OSC). Under the more restrictive
strong separation condition, all self-similar measures are doubling, but under the OSC
the situation is more subtle. A pedagogical example is given by the (p, 1−p)-Bernoulli
measure attached to the system {x 7→ x/2, x 7→ 1/2 + x/2}, which is doubling if
and only if p = 1/2. For a general self-similar iterated function system with OSC,
the so-called canonical self-similar measure is always doubling [24], but depending
on the situation, there could be (1) No other doubling self-similar measures, (2)
Infinitely many doubling and infinitely many non-doubling self-similar measures, (3)
No non-doubling self-similar measures. Yung [29] provides a detailed analysis of such
different situations along with many examples.

For a given measure µ, we let

D(µ) = {x ∈ spt(µ) : µ is doubling at x} ,

and let dimH A denote the Hausdorff dimension of A. If a measure µ is doubling, then
D(µ) = X. We are interested in the size of the set D(µ) for self-similar measures
µ satisfying the OSC in the non-trivial case when µ is not doubling. In our first
theorem, which is an immediate corollary of our main result, we show that in this
context, the set D(µ) has full Hausdorff dimension but zero Hausdorff measure.

Theorem 1.1. Let µ be a non-doubling self-similar measure fully supported on a
self-similar set X ⊂ Rn satisfying the OSC and let s = dimH X. Then

(1) dimHD(µ) = s,
(2) Hs(D(µ)) = 0.

To state our main result, we recall the notion of pointwise Assouad dimension for
measures which was recently introduced in [1]. For a measure µ supported on a metric
space X, the pointwise Assouad dimension of µ at x ∈ spt(µ) is defined by

dimA(µ, x) = inf

{
s > 0: ∃C > 0, s.t. ∀0 < r < R,

µ(B(x,R))

µ(B(x, r))
⩽ C

(
R

r

)s}
.

Let us point out that if C is not allowed to depend on the point x, the corresponding
infimum gives the (global) Assouad dimension, dimA µ, which was previously referred
to as the upper regularity dimension [19, 13]. A related pointwise notion for sets was
recently introduced and studied by Käenmäki and Rutar [21].
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The pointwise Assouad dimension at x is finite if and only if the measure is doubling
at x. Indeed, by modifying the proof of Theorem 2.2 in [17] in the obvious way, it is
easy to see that dimA(µ, x) quantifies the smallest doubling exponent of µ at a given
point, that is

dimA(µ, x) = inf
γ>1

logCγ(x)

log γ
.

In [1] it was shown that many classical fractal measures, such as the self-similar
measures we study in this paper, exhibit an exact dimensionality property for the
pointwise Assouad dimension, that is dimA(µ, x) = dimA µ for µ-almost every x ∈
spt(µ). The purpose of this paper is to take the analysis further and study the
non-typical behaviour via multifractal analysis.
Classically, in multifractal analysis one is interested in the size of the level sets of

the pointwise dimension of a given measure µ, which is defined at x ∈ X as

(1.3) dimloc(µ, x) = lim
r↓0

log µ(B(x, r))

log r
,

provided the limit exists; if the limit does not exist, we denote by dimloc(µ, x) and
dimloc(µ, x) the lower and upper pointwise dimensions, which one obtains by replacing
the limit in (1.3) by the lower and upper limit, respectively. Given a measure µ, we
denote the α-level set of the pointwise dimension by

Dloc
α (µ) = {x ∈ spt(µ) : dimloc(µ, x) = α},(1.4)

where we may omit µ from the notation if the measure is clear from the context. The
general objective in multifractal analysis is then to determine the multifractal spectrum,
α 7→ dimH Dloc

α for the pointwise dimension map. It was first observed by physicists
studying turbulence [14] that for certain well behaved measures, the multifractal
spectrum seems to behave in a regular way. For self-similar measures under the OSC,
the multifractal spectrum is nowadays very well understood [5, 2, 25, 7]; Let τµ(q)
denote the Lq-spectrum of µ. Then there are numbers 0 < αmin ⩽ αmax < ∞ given by
Equation (2.4), such that all values of dimloc(µ, x) fall onto the interval [αmin, αmax]
and for αmin ⩽ α ⩽ αmax, the value of dimHDloc

α equals the Legendre transform

(1.5) f(α) := inf
q∈R

αq + τµ(q).

There is also a well known analytic expression for f(α), which we recall in (2.5). It is
implicitly required in the above result that the limit in (1.3) exists. However, it is
also well known [5] that the Hausdorff dimension of the α-sublevel set

U loc
α (µ) := {x ∈ spt(µ) : dimloc(µ, x) ⩽ α}

coincides with the value f(α) = maxβ⩽α f(α), for all αmin ⩽ α ⩽ αmax.
From the point of view of pointwise Assouad dimension, one is led to ask what are

the sizes of the level sets

DA
α (µ) = {x ∈ spt(µ) : dimA(µ, x) = α},

or of the sublevel sets

UA
α (µ) = {x ∈ spt(µ) : dimA(µ, x) ⩽ α},

of dimA for all values of α. In our main result, we completely solve this question for
self-similar measures under the OSC.
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Theorem 1.2. Let µ be a self-similar measure satisfying the OSC and let X be the
associated self-similar set. Then, for all α ∈ [αmin, αmax),

dimH DA
α (µ) = dimH UA

α (µ) = f(α).

Moreover,
dimHDA

dimA µ(µ) = dimH UA
dimA µ(µ) = dimHX,

and for any α ̸∈ [αmin, αmax] ∪ {dimA µ}, we have DA
α (µ) = ∅.

If µ is doubling, then by [12, Theorem 2.4], dimA µ = αmax and therefore our
theorem tells that the Hausdorff spectrum of the pointwise Assouad dimension fully
coincides with the upper spectrum of the pointwise dimension. Moreover, even if
the measure is not doubling, the spectra coincide outside of the isolated point at
dimA µ = ∞ and possibly the point αmax where many types of behaviour is possible,
see Remark 4.8. Despite the similarity in the behaviour of the multifractal spectra,
the method for obtaining the result for the pointwise Assouad dimension is quite
different from the classical approach for the pointwise dimension.
Let us outline the structure of the paper. In Section 2 we recall our basic defini-

tions and notations and outline the classical approach for obtaining the multifractal
spectrum for self-similar measures. We also briefly discuss why the classical approach
does not work for the pointwise Assouad dimension. In Section 3 we develop methods
for determining the multifractal spectrum for the pointwise Assouad dimension in
the symbolic setting, and in Section 4, we apply these methods to study self-similar
measures under the OSC and prove Theorems 1.1 and 1.2.

2. Preliminaries

From now on, a measure will refer to an outer regular Borel measure. In most
cases, these will be finite or even probability measures. We will denote by C or C(· · · )
various constants where, whenever needed, the quantities inside the parentheses
explain the dependency of C on other parameters. For A ⊂ X, where X is a metric
space, dimH A denotes the Hausdorff dimension of A. For a measure µ, dimH µ is the
infimal Hausdorff dimension of sets of positive µ measure. We denote closed balls in
X with centre x and radius r > 0 by B(x, r).

2.1. Self-similar sets and measures. Let m ∈ N and Λ = {1, . . . ,m}. A self-
similar iterated function system (IFS) is a collection (φi)i∈Λ of contractive similarities
on Rd. We denote the contraction ratio of each φi by ri. Let X denote the self-similar
set associated to (φi)i. This is the unique compact and non-empty X ⊂ Rd satisfying

X =
⋃
i∈Λ

φi(X).

By rescaling X if necessary, we assume that diam(X) = 1. As a metric space, X
inherits the Euclidean metric from the ambient Euclidean space Rd. We say that the
self-similar set X satisfies the strong separation condition (SSC) if φi(X)∩φj(X) = ∅,
for all i ̸= j and we say that X satisfies the open set condition (OSC) if there exists
a non-empty bounded open set U ⊂ Rd satisfying φi(U) ⊂ U , for all i ∈ Λ and
φi(U) ∩ φj(U) = ∅, for all i ̸= j.

We denote the (open) simplex of probability vectors in Rm by

P =

{
p := (p1, . . . , pm) ∈ Rm :

m∑
i=1

pi = 1, and pi > 0,∀i = 1, . . . ,m

}
.
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For every p ∈ P , there is a unique Borel probability measure µp fully supported on
X, which satisfies

(2.1) µp =
∑
i∈Λ

piφiµp ,

where fµ denotes the push-forward measure µ ◦ f−1, for any measurable function f .
This measure is called the self-similar measure associated to the IFS (φ1, . . . , φm)
and the weight vector p.

2.2. Symbolic spaces and Bernoulli measures. Let Λ be a finite index set. The
symbolic space generated by the alphabet Λ is denoted by Σ(Λ) := ΛN. If the alphabet
is clear from the context, we suppress Λ from the notation. The elements of Σ are
called (infinite) words. For a given n ∈ N, the set of words of length n is denoted by
Σn := Λn and the set of all finite words by Σ∗ =

⋃
n∈NΣn. The following notation

is used both for the infinite words i = (i1, i2, . . .) ∈ Σ as well as for finite words
i = (i1, . . . , ik) ∈ Σ∗, when appropriate. Additionally, we reserve the letters a and
b exclusively for finite words to avoid confusion in certain cases. By |i| ∈ N ∪ {∞}
we denote the length of the word i. The projection of i to the first n ⩽ |i| letters
is i|n = (i1, . . . , in). Given two words i and j, i ∧ j is their longest common prefix.
We write j < i if j ∈ Σ∗ is a subword of i ∈ Σ. That is, for some n ∈ N, σni||j| = j,
where σ : Σ → Σ is the left shift on Σ defined by σ(i1, i2, i3, . . .) = (i2, i3, . . .). For a
finite word i, we also let i− denote the word obtained from i by deleting the last
symbol.
Self-similar sets and measures admit a natural symbolic coding. Suppose (φi)i∈Λ

is a self-similar IFS as in the previous subsection and let Λ = {1, . . . ,m}. There is
a natural coding map π between the symbolic space Σ and the self-similar set X,
defined by

(2.2) π(i) = lim
n→∞

φi|n(0).

Under the SSC, the map π is a bijection but π may fail to be injective if only the
OSC is assumed. We next define a metric on Σ, which allows us to capture some
geometric properties of X on the symbolic side. To that end, given i ∈ Σn, we denote

ri = ri1ri2 · · · rin ,
pi = pi1pi2 · · · pin ,
φi = φi1 ◦ φi2 ◦ . . . ◦ φin .

Let

ρ(i, j) = ri∧j,

It is easy to see that ρ is a metric (in fact an ultrametric) on Σ and under the metric
ρ the projection map π : Σ → X is Lipschitz and if X satisfies the SSC it is even
bi-Lipschitz.

Given i ∈ Σ∗, we denote the corresponding cylinder set by [i] := {j ∈ Σ: j||i| = i}.
These cylinder sets are clopen and form a basis for the topology induced by ρ. Indeed,
for any i ∈ Σ and r > 0, we have

(2.3) B(i, r) = [i|n],

where n = n(i, r) ∈ N is the unique natural number satisfying ri|n ⩽ r < ri|n−1 .
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Finally, we will consider Bernoulli measures on Σ. For p ∈ P, we define a pre-
measure νp on the cylinder sets in Σ by letting

νp([i]) = pi,

for all i ∈ Σ∗ and extend it to a unique Borel probability measure on Σ. The measure
νp is called the Bernoulli measure associated to the probability vector p. Under the
OSC it holds that µp = πνp.

2.3. Multifractal analysis of pointwise dimensions. Let us recall how to obtain
an analytic expression for the multifractal spectrum of the pointwise dimension in
the simplest nontrivial setting i.e. for Bernoulli measures on the symbolic space. Let
ri and pi for i ∈ Λ, as well as ν := νp and ρ be as in Section 2.2 above. Recall that
the numbers αmin and αmax referenced in the introduction are then given by

(2.4) αmin = min
i∈Λ

log pi
log ri

and αmax = max
i∈Λ

log pi
log ri

.

In the special case where all of the quantities log pi
log ri

are equal, the measure ν is easily

seen to be Ahlfors s-regular for s = dimH Σ and therefore dimA(ν, i) = dimloc(ν, i) = s
for all i ∈ Σ. Moreover, this remains true for the geometric counterpart µp and in
particular Theorem 1.2 holds trivially. Going forward, we may thus assume that
αmin < αmax so that the interval [αmin, αmax) is non-degenrate.

For any q ∈ R, we define τ(q) as the unique real number satisfying
m∑
i=1

pqi r
τ(q)
i = 1 .

The function τ : R → R is strictly decreasing, continuous and strictly convex. Let
f(α) = infq∈R αq + τ(q) denote the Legendre transform of τ . By the analytic implicit
function theorem, for each α ∈ (αmin, αmax) there exists a unique q = q(α), such that

(2.5) f(α) = αq + τ(q) ,

and it follows from the convexity of τ that α = α(q), as defined via (2.5) is a decreasing
function of q ∈ R. Using implicit differentiation leads to the expression

α = α(q) = −τ ′(q) =

∑
i∈Λ p

q
i r

τ(q)
i log pi∑

i∈Λ p
q
i r

τ(q)
i log ri

,

and by standard arguments, the function f is concave on the interval [αmin, αmax].
Simple calculations show that α(q) → αmin as q → ∞ and α(q) → αmax as q → −∞.
Combining the above, for q ∈ R, α = α(q), we have

(2.6) f(α) = q

∑
i∈Λ p

q
i r

τ(q)
i log pi∑

i∈Λ p
q
i r

τ(q)
i log ri

+ τ(q) =

∑
i∈Λ p

q
i r

τ(q)
i log pqi r

τ(q)
i∑

i∈Λ p
q
i r

τ(q)
i log ri

.

Note that f(α) is maximised when q = 0 and that f(α(0)) = τ(0) = dimH Σ. Moreover,
f(α) is strictly increasing on (αmin, α(0)] and strictly decreasing on [α(0), αmax) so
we may set f(αmin) = limα→αmin

f(α) and f(αmax) = limα→αmax f(α). Let us set
f(α) = maxβ⩽α f(β), or more explicitly,

(2.7) f(α) =

{
f(α), if αmin ⩽ α ⩽ α(0)

dimHΣ, if αmax ⩾ α > α(0)
.
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The following is a well known theorem, which establishes the multifractal formalism
in the symbolic setting, see e.g. [7]. In addition to the level sets Dloc

α (ν), recall (1.4),
we consider the sublevel sets U loc

α (ν) = {x ∈ spt(ν) : dimloc(ν, x) ⩽ α}.

Theorem 2.1. For any α ∈ [αmin, αmax], we have

dimH Dloc
α (ν) = f(α)

and

dimH U loc
α (ν) = f(α) .

Furthermore, Dloc
α (ν) = ∅, for α ̸∈ [αmin, αmax].

This, now standard, theorem holds also for self-similar measures under the OSC
[5, 2] but the above symbolic version is enough for our considerations. Let us
briefly recall the main idea of the proof; for more details, see e.g. [5, 7]. For a
given α ∈ [αmin, αmax] a new Bernoulli measure να is generated by the probability

vector (pq1r
τ(q)
1 , . . . , pqmr

τ(q)
m ), where q = q(α) is given by (2.5). Then, one shows that

να(D
loc
α (ν)) = 1 and further dimloc(να, i) = f(α) for all i ∈ Dloc

α (ν) which is enough
to prove the result.

In the context of the pointwise Assouad dimension this measure theoretic approach
is unavailable due to the following theorem. By a fully supported ergodic measure
on X we mean the pushforward under the natural projection π of a fully supported
measure on Σ which is ergodic under the left shift σ.

Theorem 2.2. Let µ be a doubling self-similar measure supported on a self-similar
set X satisfying the OSC, and let ν be a fully supported ergodic measure on X. Then

dimA(µ, x) = dimA µ = αmax,

for ν-almost every x ∈ X.

Proof. In [1], Lemma 4.7 holds for any fully supported ergodic measure, and therefore
[1, Theorem 4.1] holds in the above form. □

This theorem indicates a drastic difference in the typical behaviour of dimloc(µ, x)
and dimA(µ, x) for self-similar measures: for any self-similar measure ν, one has
ν(DA

α (µ)) = 0, for all α < αmax. Since we cannot employ the standard measure
theoretic tools, we have to develop a more hands on approach. We will first show, by
employing the method of types approach as in [26], that in the symbolic setting the
dimension of the sublevel sets {x : dimA(µ, x) ⩽ α} is given by f(α). Constructing
a large Moran subset of DA

α , we then pass from the the sublevel sets to the actual
multifractal spectrum dimH DA

α . After this, by passing to a subsystem with additional
separation, we transfer the symbolic results to the geometric setting of self-similar
measures under the OSC. If the self-similar measure is doubling, this is relatively
easy. In the non-doubling case, the main obstacle is to show that outside of the full
measure set of points where dimA(µ, x) = ∞, there is a full dimensional subset of X
where the multifractal spectrum is captured on the symbolic side. Finally, we show
that even if µ fails to be doubling, there are no points where the pointwise Assouad
dimension is in (αmax,∞).
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3. Multifractal analysis of Bernoulli measures

In this section, we conduct multifractal analysis for the pointwise Assouad dimension
of Bernoulli measures on symbolic spaces. The results of this section serve as a basis
for the multifractal analysis of self-similar measures conducted later in Section 4.
Recently, an approach to multifractal analysis via Lagrange duality was developed by
Rutar [26] and some of his ideas, such as the method of types from large deviation
theory, turn out to be useful for our purposes.
For the remainder of the section, we fix a symbolic space Σ and a probability

vector p ∈ P along with the contraction parameters (r1, . . . , rm) which determine our
metric ρ. We will denote by ν = νp the associated Bernoulli measure and simplify
the notation DA

α (ν) to

DA
α = {x ∈ spt(ν) : dimA(µ, x) = α} .

We also let

UA
α = {x ∈ spt(ν) : dimA(µ, x) ⩽ α} .

The main result of this section establishes the full multifractal spectrum for the
Bernoulli measures.

Theorem 3.1. For any α ∈ [αmin, αmax], we have

dimHDA
α = dimH UA

α = f(α).

Moreover, for α ̸∈ [αmin, αmax], we have DA
α = ∅.

3.1. Method of types. For a ∈ Σ∗ and i ∈ Λ, we let Ni(a) denote the number of
times the symbol i appears in a and set

ξi(a) =
Ni(a)

|a|
.

We denote the type of a by ξ(a) := (ξ1(a), . . . , ξm(a)) ∈ P . Given a collection Γ ⊂ Σ∗,
we let

PΓ = {ξ(a) ∈ P : a ∈ Γ} .
For Γ ⊂ Σ∗ and q ∈ PΓ, we define the type class of q by

(3.1) TΓ(q) = {a ∈ Γ: ξ(a) = q}.
Simplifying the notation slightly, we denote Tn(q) = TΣn(q). The main benefit in
introducing type classes is that the quantities ra and pa are constant on each type
class. We also remark that the type classes form a partition of Γ, i.e. Γ =

⋃
q∈PΓ

TΓ(q)
where the union is disjoint.

We say that a sequence (Γn)n∈N, where Γn ⊂ Σn is abundant, if the following
conditions are satisfied:

(A1) There is a constant C > 0, such that #TΓn(q) ⩾ C#Tn(q), for all n ∈ N and
q ∈ PΓn .

(A2) For every δ > 0, the set PΓn is δ-dense in P for all large enough n ∈ N.
The reason for stating the results in this section for abundant sequences is purely
technical. In Section 4, the absence of geometric separation of cylinders causes
difficulties which we overcome by passing to suitably well separated subsystems.
These subsystems are generated by abundant sequences which enables us to transfer
the computation of the pointwise Assouad dimension to the symbolic side and apply
the results of this section.
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For the remainder of the section, we fix an abundant sequence (Γn)n∈N. Recall the
following basic fact, which follows from (A1) and [6, Lemma 2.3].

Lemma 3.2. For any n ∈ N and q ∈ PΓn, we have

nH(q)− logC(n+ 1)m+1 ⩽ log#TΓn(q) ⩽ nH(q).

Classically, the pointwise dimensions of self-similar measures are described by the
entropy of the measure µ and the Lyapunov exponent of the associated dynamical
system, the latter of which captures the contribution of the geometry of the projection
map π at typical points. For probability vectors q ∈ P and p ∈ P (the latter of which
we have fixed), we denote by

H(q) = −
m∑
i=1

qi log qi, and Hp(q) = −
m∑
i=1

qi log pi,

the entropy of q, and the cross entropy of p relative to q, respectively. The Lyapunov
exponent of q is defined by

λ(q) = −
m∑
i=1

qi log ri.

These notions are related to the pointwise Assouad dimension of Bernoulli measures
via the following characterisation which we will use repeatedly in what follows. The
lemma follows easily from (2.3) and the definition of the Bernoulli measure.

Lemma 3.3. Let p ∈ P and ν be the Bernoulli measure on Σ associated to p. Then
for any i ∈ Σ we have

dimA(ν, i) = lim sup
n→∞

sup
a<i,|a|=n

log pa
log ra

= lim sup
n→∞

sup
a<i,|a|=n

Hp(ξ(a))

λ(ξ(a))
.

3.2. Multifractal analysis. Since we cannot employ the standard measure theoretic
tools for multifractal analysis, we will commence by building large Moran sets inside
the level sets DA

α and derive the multifractal spectrum for the pointwise Assouad
dimension via their dimensions. To that end, given α ⩾ 0, we let

P(α) =

{
q ∈ P :

Hp(q)

λ(q)
⩽ α

}
,

Γn(α) =

{
a ∈ Γn :

Hp(ξ(a))

λ(ξ(a))
⩽ α

}
,

PΓn(α) = PΓn(α) = P(α) ∩ PΓn .

The next lemma follows by elementary arguments from (A2) and the continuity of

q 7→ Hp(q)

λ(q)
.

Lemma 3.4. Let α > αmin. Then for all small enough δ > 0, PΓn(α) is δ-dense in
P(α) for all large enough n ∈ N.

The purpose of introducing the sets Γn(α) is the following: For every n ∈ N, the
symbolic space Σ(Γn(α)) is a subset of UA

α , since the construction essentially forces
Hp(ξ(a))

λ(ξ(a))
⩽ α uniformly over all subwords of a given word i ∈ Σ(Γn(α)). Moreover, the

Hausdorff dimension of a symbolic space is easy to calculate and the abundance of the
sequence Γn together with some combinatorial arguments allows us to approximate
f(α) arbitrarily well with the Hausdorff dimensions of the sets Σ(Γn(α)). This is made
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formal in the following lemmata. Note that in what follows, we consider Σ(Γn(α)) as
a subset of Σ = Σ(Λ).

Lemma 3.5. For all α > αmin, all large enough n and all i ∈ Σ(Γn(α)), we have

dimA(ν, i) ⩽ α.

Proof. For a fixed α > αmin, the set Γn(α) is non empty for all large enough n by
Lemma 3.4. Let i ∈ Σ(Γn(α)) and let a be a finite subword of i, with |a| ⩾ 2n. It
follows that

a = ba1a2 . . . akb
′,

where aℓ ∈ Γn(α), for all ℓ = 1, . . . , k and |b|, |b′| ⩽ n, and thus

Hp(ξ(a))

λ(ξ(a))
=

∑
i∈ΛNi(a) log pi∑
i∈ΛNi(a) log ri

⩽

∑k
ℓ=1

∑
i∈ΛNi(aℓ) log pi + 2n log pmin∑k
ℓ=1

∑
i∈ΛNi(aℓ) log ri

⩽ α +
2 log pmin

k log rmax

.

Letting |a| → ∞, sends k → ∞ and recalling Lemma 3.3 gives the claim. □

The following technical lemma is used to bound the Hausdorff dimension of Σ(Γn(α))
from below.

Lemma 3.6. Let α ∈ (αmin, αmax]. Then for any ε > 0, and for all large enough
n ∈ N, there exists q ∈ PΓn(α), such that

H(q)

λ(q)
⩾ f(α)− ε.

Proof. Assume first that αmin < α = α(q) ⩽ α(0). Let ε > 0, τ = τ(q) and
ω = (pq1r

τ
1 , . . . , p

q
mr

τ
m) ∈ P and note that

Hp(ω)

λ(ω)
=

∑m
i=1 p

q
i r

τ
i log pi∑m

i=1 p
q
i r

τ
i log ri

= α .

Observe that the map q 7→ H(q)
λ(q)

is continuous and recall that by Lemma 3.4, PΓn(α)

is δ-dense in P(α) for all large n. Choosing δ small and n ∈ N large, we may thus
pick q ∈ PΓn(α), such that

H(q)

λ(q)
⩾

H(ω)

λ(ω)
− ε =

∑m
i=1 p

q
i r

τ
i log p

q
i r

τ
i∑m

i=1 p
q
i r

τ
i log ri

− ε = f(α)− ε ,

where, in the last equality, we used (2.6) and the fact that f(α) = f(α) since we have
assumed that α ⩽ α(0).

If α > α(0), we let ω = (rs1, . . . , r
s
m) where s = dimH Σ = τ(0) = f(α). Then

Hp(ω)

λ(ω)
=

∑m
i=1 r

s
i log pi∑m

i=1 r
s
i log ri

= α(0) < α ,

so ω ∈ P(α). Arguing as above, there is q ∈ PΓn(α), such that

H(q)

λ(q)
⩾

H(ω)

λ(ω)
− ε = s− ε = f(α)− ε ,

as required. □
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Lemma 3.7. Let α ∈ (αmin, αmax]. Then for any ε > 0, there is n ∈ N, such that

dimHΣ(Γn(α)) ⩾ f(α)− ε.

Proof. Let α ∈ (αmin, αmax] and let ε > 0. By Lemma 3.4, the symbolic space Σ(Γn(α))
is non-empty for all large n. It is well known that the Hausdorff dimension of Σ(Γn(α))
is the unique sn satisfying

(3.2)
∑

a∈Γn(α)

rsna = 1.

Using Lemma 3.6, for all large enough n ∈ N, we may pick qn ∈ PΓn(α) satisfying

(3.3)
H(qn)

λ(qn)
⩾ f(α)− ε

2
.

We note that ξ(a) = qn for all a ∈ TΓn(qn) and that rn = ra is also independent of
a ∈ TΓn(qn) and satisfies

− log rn = nλ(qn) .

We may thus estimate

1 =
∑

a∈Γn(α)

rsna =
∑

q∈Pn(α)

∑
a∈TΓn (q)

rsna ⩾ #TΓn(qn)r
sn
n .

Defining tn such that #TΓn(qn)r
tn
n = 1, we obtain a lower bound for sn. By an

application of Lemma 3.2, we have

dimH Σ(Γn(α)) ⩾ tn =
log#TΓn(qn)

− log rn
⩾

H(qn)

λ(qn)
+

C log(n+ 1)m−1

n log rmax

.

By choosing n ∈ N large enough, such that − logC(n+1)m−1

n log rmax
⩽ ε

2
, and using (3.3) we

arrive at the claim. □

3.3. Construction of large Moran subsets. In this section, we derive Theorem 3.1
by constructing large Moran subsets inside the level sets DA

α . The following Hausdorff
dimension formula is well known (see e.g. [10, Proposition 3.1] or [20, Theorem 4.6]).

Lemma 3.8. Let nk ∈ N for all k ∈ N and let ∆k ⊂ Σnk
. If ck ⩽ nk ⩽ Ck for some

constants 0 < c ⩽ C < ∞, then Then

dimH(∆1 ×∆2 × · · · ) = lim inf
k→∞

sk ,

where sk is the unique number satisfying the equation
∑

a∈∆1×···×∆k
rska = 1.

Our aim is now, for every α ∈ (αmin, αmax] and ε > 0, to construct a Moran subset
Ωε(α) ⊂ DA

α , which satisfies dimHΩε(α) ⩾ f(α) − ε. Going forward, for a given
Γ ⊂ Σn, we let αmin(Γ) = mina∈Γ

log pa
log ra

and αmax(Γ) = maxa∈Γ
log pa
log ra

. The following

simple lemma will be useful in ensuring that the Moran subsets can be constructed
via abundant sequences.

Lemma 3.9. Let ν be the Bernoulli measure associated to the probability vector p,
n ∈ N, Γ ⊂ Σn and α ∈ [αmin(Γ), αmax(Γ)]. Then, there exists i ∈ Σ(Γ), such that

dimA(ν, i) = α.
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Proof. To ease notation, we denote by amin the symbol in Γ minimising the ratio log pa
log ra

and by amax the symbol maximising the same ratio. Then
log pamin

log ramin
⩽ α ⩽ log pamax

log ramax
. We

define i inductively by setting i0 = amax and

in+1 =

{
amax if

log pi|n
log ri|n

< α ,

amin if
log pi|n
log ri|n

⩾ α .

Using Lemma 3.3, it is easy to check that dimA(ν, i) = α. □

Let ε > 0 and α ∈ (αmin, αmax). We start by picking n ∈ N so that αmin(Γn) <
α < αmax(Γn). Note that this is possible by (A2) since the value log pa

log ra
is a continuous

function of the type of a. Using Lemma 3.9, we then pick i ∈ Σ(Γn) such that
dimA(ν, i) = α. By making n larger if necessary, by Lemma 3.7 we may assume that

dimHΣ(Γn(α)) ⩾ f(α)− ε

2
.

Denote by s := f(α)− ε < dimHΣ(Γn(α)), and note that∑
a∈Γn(α)

rsa > 1,

by (3.2). Since ck1 ⩽ ri|k ⩽ ck2 for some constants c1, c2 > 0, we may choose ck ⩽
Mk ⩽ Ck ∈ N such that

(3.4)

( ∑
a∈Γn(α)

rsa

)Mk

rsi|k > 1.

Now we define

(3.5) Ωε(α) = Γn(α)
M1 × {i|n} × Γn(α)

M2 × {i|2n} × Γn(α)
M3 × {i|3n} × · · · .

and note that Ωε(α) ⊂ Σ(Γn) since i ∈ Σ(Γn) and Γn(α) ⊂ Γn. The next lemma
ensures that Ωε(α) has the properties we are after.

Lemma 3.10. For all α ∈ (αmin, αmax) and ε > 0, the set Ωε(α) satisfies

(1) Ωε(α) ⊂ DA
α ,

(2) dimHΩε(α) ⩾ f(α)− ε.

Proof. First we show that Ωn(α) ⊂ DA
α . Let i be as defined above. If j ∈ Ωn(α),

then it follows from Lemma 3.3, that dimA(ν, j) ⩾ α, since for every a < i, we have
a < j by construction, and since dimA(ν, i) = α. The upper bound dimA(ν, j) ⩽ α
also follows similarly to Lemma 3.5 since for any b < j the word b is ’almost’ in
Γn(α): It is a finite concatenation of longer and longer words in Γn(α) and of the
subwords of i, where dimA(ν, i) = α. This completes the proof of the first claim.
We derive the second claim using Lemma 3.8. The Hausdorff dimension of Ωn(α) is

given by lim inf tk where tk is the unique number satisfying

(3.6)
k∏

j=1

∑
a∈Γn(α)

Mj

rtka r
tk
i|j = 1.
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By (3.4), for every k ∈ N, we have

k∏
j=1

∑
a∈Γn(α)

Mj

rsar
s
i|j =

k∏
j=1

( ∑
a∈Γn(α)

rsa

)Mj

rsi|j > 1.

Combining this with (3.6) and the observation that the map

t 7→
k∏

j=1

∑
a∈Γn(α)

Mj

rtar
t
i|j

is decreasing for all k ∈ N, it follows that tk > s for all k ∈ N, and therefore

dimH Ωn(α) = lim inf
k→∞

tk ⩾ s = f(α)− ε ,

as required. □

To achieve the full multifractal spectrum, we need to treat the case when α = αmin

separately. For this, let Λmin = {i ∈ Λ: log pi
log ri

= mini∈Λ
log pi
log ri

}. The following lemma

follows immediately from Lemma 3.3 and Theorem 2.1 for α = αmin.

Lemma 3.11. We have Σ(Λmin) ⊂ DA
αmin

and dimH Σ(Λmin) = f(αmin).

We may now conclude with the proof of Theorem 3.1 yielding the full multifractal
spectrum for the pointwise Assouad dimension of Bernoulli measures.

Proof of Theorem 3.1. For n ∈ N, we let Γn = Σn. Then (Γn)n∈N trivially is an
abundant sequence. Let α ∈ [αmin, αmax]. Since DA

α ⊂ UA
α ⊂ U loc

α , the upper bound
follows from Theorem 2.1. For α = αmin, the lower bound follows from Lemma 3.11
and for α ∈ (αmin, αmax) and ε > 0, Lemma 3.10 implies that

dimH DA
α ⩾ dimHΩε(α) ⩾ f(α)− ε .

Finally, for α = αmax, we may define Ωε(α) using the word i = imaximax . . . in
(3.5), where imax is the symbol in Λ maximising log pi

log ri
. Since Γn = Σn, we have that

Ωε(α)Σ(Γn) and Lemma 3.10 holds also for α = αmax in this special case and the
proof finishes as previously. Finally, since log pa

log ra
∈ [αmin, αmax], for any a ∈ Σ∗, the

second claim readily follows from Lemma 3.3. □

4. Multifractal analysis of self-similar measures

In this section, we fix a self-similar measure µ supported on a self-similar set
X ⊂ Rd satisfying the OSC. We wish to apply the results of Section 3 to deduce
Theorem 1.2. The absence of geometric separation of cylinders provides additional
difficulties compared to the symbolic case. Heuristically, this is because the codings of
geometrically adjacent cylinders may be very far apart in the symbolic space, which
may result in nearby cylinders having incomparable masses. This is also the reason
why self-similar measures with OSC may fail to be doubling.

Let U be the open set witnessing the OSC. By a theorem of Schief [27], we may
assume that X ∩ U ̸= ∅ and therefore, we may fix a finite word k ∈ Σ∗ satisfying
φk(X) ⊂ U . We also recall the following characterisation of the OSC [27]: There is a
constant M < ∞ such that #Σ(x, r) ⩽ M , for all x ∈ X and r > 0, where

Σ(x, r) = {i ∈ Σ∗ : ri ⩽ r < ri− , φi(X) ∩B(x, r) ̸= ∅} .
From now on, we fix such a constant M .
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Appending k to any word i ∈ Σ∗ allows us to control the measures of geometric
balls with their symbolic counterparts.

Lemma 4.1. There are constants C, δ > 0, such that

Cpi ⩽ µ(B(x, δri)) ⩽ pi,

for any i ∈ Σ∗ and x ∈ φik(X).

Proof. Let i ∈ Σ∗ and x ∈ φi(X) and observe first that the lower bound is trivial,
since φii(X) ⊂ B(x, ri), for any i ∈ Λ. It remains to prove the upper bound. Since
φk(X) is compact and φk(X) ⊂ U , we have that dist(φk(X), ∂U) > 0 and therefore
we may choose 0 < δ < dist(φk(X), ∂U). By self-similarity, we then have

(4.1) dist(φik(X), φi(∂U)) > δri.

In particular, since the OSC implies that φi(U) ∩ φj(U) = ∅ for all j ∈ Σ|i| with
j ̸= i and since φik(X) ⊂ φi(U), we get by (4.1) that for any x ∈ φik(X), we have
B(x, δri) ∩X ⊂ φi(X) and therefore

µ(B(x, δri)) ⩽ pi.

□

Towards a proof of Theorem 1.2, we begin with the following proposition, which
generalises Theorem 2.2 by dropping the assumption that µ is doubling.

Proposition 4.2. Let µ be a self-similar measure satisfying the OSC. Then for any
ergodic measure ν on X, we have

dimA(µ, x) = dimA µ,

for ν-almost every x ∈ X.

Proof. If µ is doubling, the claim is precisely Theorem 2.2. Therefore, we assume that
µ is not doubling, so that dimA µ = ∞. It then suffices to show that at ν-almost all
points, µ is not pointwise doubling. For A ⊂ X and ε > 0 we let Uε(A) denote the
open ε-neighbourhood of A. Since µ is not doubling, by [29, Theorem 2.3], for any
n ∈ N, there are words in, jn ∈ Σ∗ satisfying φjn(X) ⊂ Urin (φin(X)) and pjn ⩾ npin .
We let

N = {i ∈ Σ: ink < i, ∀n ∈ N}
and observe that a simple application of Birkhoff’s ergodic theorem gives ν(N ) = 1,
see [1, Lemma 4.7]. We will finish the proof by showing that if i ∈ N , then µ is not
doubling at π(i). To that end, let i ∈ N and for n ∈ N choose m ∈ N, such that
i|m+|k| = jink, where j = i|n−|ink|, and let rn = ri|m . By Lemma 4.1, we have

µ(B(π(i), δrn)) ⩽ pim = pjpin .

Moreover, as φjjn(X) ⊂ B(φi|m(X), rn) ⊂ B(π(i), 2rn), it follows that

µ(B(π(i), 2rn)) ⩾ pjjn = pjpjn ⩾ npjpin ⩾ nµ(B(π(i), δrn)).

Since this holds true for all n ∈ N, it follows that µ is not doubling at π(i). □

The previous proposition implies Claim (2) in Theorem 1.1.

Corollary 4.3. Let µ is a non-doubling self-similar measure satisfying the OSC and
let s = dimH X. Then

Hs(D(µ)) = 0.
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Proof. Recall that Hs is equivalent to the self-similar measure ν corresponding to the
probability vector rs1, . . . , r

s
m. Since all self-similar measures are ergodic, the claim

follows from Proposition 4.2. □

In light of Proposition 4.2, there is no a priori expectation for the sets DA
α to be

empty for αmax < α < ∞. However, as will be shown soon, this in fact is the case.
Let us begin with an illustrative example

Example 4.4. Let µ be the image of the (p, 1 − p)-Bernoulli measure on the unit
interval corresponding to the self similar IFS {x 7→ x/2, x 7→ 1/2 + x/2}. Suppose

p < 1
2
. Then µ is not doubling, αmin = log(1−p)

− log 2
and αmax = log p

− log 2
. It is easy to see

that dimA(µ, 0) = αmax and that dimA(µ, q) = αmin for all dyadic rationals q ∈ (0, 1].
Suppose x ∈ [0, 1] is not a dyadic rational, let i ∈ {0, 1} be the binary coding of x
and assume that µ is doubling at x. Then it is readily verified that the number of
consecutive zero’s in i is bounded by a constant, say N . Consider 0 < r < R < 1
and let k,m be integers satisfying 2−k > 2R ⩾ 2−k−1 and 2−k−m+1 > r ⩾ 2−k−m. Let
J be the dyadic interval of length 2−k−m containing x. If B(x,R) is contained in a
unique dyadic interval I of length 2−k, we have

µ(B(x,R)) ⩽ µ(I) ⩽ p−mµ(J) ⩽ p−mµ(B(x, r)) = 2mαmaxµ(B(x, r))

⩽ 23αmaxµ(B(x, r))

(
R

r

)αmax

.

On the other hand, if B(x,R) intersects two adjacent dyadic intervals I1, I2 of length
2−k, let a denote their common endpoint, say the left endpoint of I2 and the right
endpoint of I1. Then µ(I1) ⩾

p
1−p

µ(I2), so if x ∈ I1, then

µ(B(x,R)) ⩽ p−1µ(I1) ⩽ p−m−1µ(J) ⩽ p−m−1µ(B(x, r))

⩽ 24αmaxµ(B(x, r))

(
R

r

)αmax

.

Finally, if x ∈ I2, it follows that

µ(I1) ⩽

(
1− p

p

)N−1

µ(I2) ,

so that

µ(B(x,R)) ⩽ µ(I1) + µ(I2)

⩽

(
1 +

(
1− p

p

)N−1
)
µ(I2)

⩽

(
1 +

(
1− p

p

)N−1
)
p−mµ(J)

⩽ Cµ(B(x, r))

(
R

r

)αmax

,

for C = 23αmax(1 + (1−p
p
)N−1). It is easy to see that also dimA(µ, x) ⩾ αmin for all

x ∈ [0, 1]. So we conclude that for all x, either dimA(µ, x) = ∞ (if µ is not doubling
at x) or else αmin ⩽ dimA(µ, x) ⩽ αmax.



16 ROOPE ANTTILA AND VILLE SUOMALA

2−N1R

2−N2R

i1

i2

i3

Figure 1. Proof of Lemma 4.6: The point in the picture is x ∈ A2 and
letting d = d(x, φi2(X)), we see that B(x, 2d) contains a sub-cylinder
of [i2] of size comparable to d. This gives a lower bound for µ(B(x, d)).
The choice of N2 ensures that a sufficiently large portion of the mass of
B(x,R) comes from [i2].

The phenomenon of the previous example generalises to self-similar measures on
Rd satisfying the OSC. In the general case the proof is more complicated partly since,
unlike in Example 4.4, it is difficult to identify the codings of geometrically adjacent
cylinders. However, the pointwise doubling property of the measure µ essentially
allows us to transfer mass between adjacent cylinders at exponentially separated
scales. For such points x, this implies that the measure of balls B(x, r) scales as in
the symbolic setting up to an arbitrarily small error in the exponent. This is the
content of Lemma 4.6 which amounts to the main technical part of the proof of the
following theorem.

Theorem 4.5. Let µ be a self-similar measure satisfying the OSC. Then

αmin ⩽ dimA(µ, x) ⩽ αmax

if and only if µ is doubling at x. In particular, DA
α = ∅ for α ̸∈ [αmin, αmax]∪{dimA µ}

Proof. If αmin ⩽ dimA(µ, x) ⩽ αmax < ∞, then µ is doubling at x by [1, Proposition
3.1]. Towards the converse implication, our first goal is to first verify the estimate
dimA(µ, x) ⩽ αmax. The following geometric lemma is the key technical ingredient of
the argument; See Figure 1 for an illustration.

Lemma 4.6. Let µ be a self-similar measure satisfying the OSC, and assume that µ is
doubling at x. Then for all ε > 0 there exists N ∈ N and a constant Cε = C(ε, x, µ) >
0, such that for all 0 < r < R, either

(4.2)
µ(B(x,R))

µ(B(x, r))
⩽ Cε

(
R

r

)αmax

,
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or there exists a scale r < d ⩽ 2−NR, such that

(4.3)
µ(B(x,R))

µ(B(x, d))
⩽

(
R

d

)αmax+ε

.

Proof. For a given ε > 0, we let N0 = 1 and N = N1 ∈ N be large enough to satisfy

N0 logC

N1 log 2
<

ε

2
and

CM

pminr
αmax
min

⩽ 2εN1/2 ,

where C > 1 is the doubling constant of µ at x. Moreover, we inductively choose
integers N2 ⩽ N3 ⩽ . . . ⩽ NM satisfying

Ni−1 logC

Ni log 2
<

ε

2
.

Applying the doubling property repeatedly, we get

(4.4) µ(B(x,R)) ⩽ CNiµ(B(x, 2−NiR)) ⩽ CNMµ(B(x, 2−NiR)) ,

for all i = 1, . . . ,M and all R > 0.
Let us now pick 0 < r < R and enumerate Σ(x,R) = {ii}ℓi=1 in the order of

decreasing mass, that is so that pi1 ⩾ pi2 ⩾ . . . ⩾ piℓ . Recall that ℓ ⩽ M . Let
A1 = {y ∈ X : d(y, φi1(X)) ⩽ 2−M1R}, and inductively,

Ai = {y ∈ X : d(y, φii(X)) ⩽ 2−NiR, d(y, φij(X)) > 2−NjR, for all j < i},

for each i = 2, . . . , ℓ. Then it is easy to see that x ∈
⋃ℓ

i=1 Ai. Indeed, at least one of
the words {ii}ℓi=1, say ij, is a prefix of a coding of x and therefore d(x, φij(X)) =

0 ⩽ 2−NjR. Now either x ∈
⋃j−1

i=1 Ai, or we have that d(x, φii(X)) > 2−NiR, for all
i ⩽ j − 1, so x ∈ Aj.
Now, we fix 1 ⩽ i ⩽ ℓ, such that x ∈ Ai. Since N1 ⩽ N2 ⩽ . . . ⩽ NM , we have

d(x, φij(X)) > 2−NjR ⩾ 2−Ni−1R, for all j < i. In particular, B(x, 2−Ni−1R) ∩X ⊂⋃ℓ
k=i φik(X), and thus

(4.5) µ(B(x, 2−Ni−1R)) ⩽
ℓ∑

k=i

pik ⩽ Mpii .

Let us divide the proof into two cases:

Case 1: If d(x, φii(X)) ⩽ r, then there is a point y ∈ φii(X), such that y ∈ B(x, r).
Recall that φii(X) is compact. Let j be a coding of y. Since y ∈ φii(X), we may
assume that j|n = ii, where n ∈ N is the unique integer satisfying rj|n ⩽ R < rj|n−1 .
Then we choose k ∈ N to be the unique integer satisfying rj|n+k

⩽ r < rj|n+k−1
. Since

r > rj|n+k+1
, we have φjn+k+1

(X) ⊂ B(y, r) and therefore,

µ(B(y, r)) ⩾ pminpj|n+k
.

Recalling that C is the doubling constant of µ at x and by using the fact that
d(x, φii(X)) ⩽ r, we have

(4.6) µ(B(x, r)) ⩾ C−1µ(B(x, 2r)) ⩾ C−1µ(B(y, r)) ⩾ C−1pminpj|n+k
,
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where C > 1 does not depend on ε nor N . Therefore, using (4.4) and (4.5)

µ(B(x,R))

µ(B(x, r))
⩽ CNM

µ(B(x, 2−Ni−1R))

µ(B(x, r))
⩽ CNM

Mpjn
C−1pminpjn+k

= CNM+1 M

pmin

(
k∏

j=n+1

pjj

)−1

= CNM+1 M

pmin

 k∏
j=n+1

r

log pjj
log rjj

j

−1

⩽ CNM+1 M

pmin

(
k∏

j=n+1

rαmax
jj

)−1

= CNM+1 M

pmin

(
rj|n
rj|n+k

)αmax

⩽ CNM+1 M

pminr
αmax
min

(
R

r

)αmax

,

(4.7)

so in this case, the first inequality holds with Cε = CNM+1 M
pminr

αmax
min

.

Case 2: If r < d(x, φii(X)) ⩽ 2−NiR, then we let d = d(x, φii(X)) so that 2Ni ⩽ R
d
.

Since φii(X) is compact, there is a point y ∈ B(x, d) ∩ φii(X) and replacing the ball
B(x, r) by B(x, d) in the computation (4.6), we see that

µ(B(x, d)) ⩾ C−1pminpj|n+k
,

where j is a coding of y, satisfying j|n = ii and k ∈ N is the unique integer satisfying
rj|n+k

⩽ d < rj|n+k−1
. Using (4.4), (4.5), and the choice of Ni, and computing as in

(4.7), we obtain

µ(B(x,R))

µ(B(x, d))
⩽ CNi−1

µ(B(x, 2−Ni−1R))

µ(B(x, d))
⩽ CNi−1

Mpjn
C−1pminpjn+k

⩽ (2Ni)
Ni−1 logC

Ni log 2
CM

pminr
αmax
min

(
R

d

)αmax

⩽

(
R

d

)αmax+ε

,

as required. □

Let now x ∈ X, fix 0 < r < R and assume that µ is doubling at x. Let ε > 0 and
let N ∈ N and Cε be as in Lemma 4.6. Let us show that, for some k = 0, 1, . . ., there
are r < dk ⩽ 2−Ndk−1 ⩽ . . . ⩽ 2−kNR = 2−kNd0 satisfying

(4.8)
µ(B(x, dm−1))

µ(B(x, dm))
⩽

(
dm−1

dm

)αmax+ε

,

for all m = 1, . . . , k, and

µ(B(x, dk))

µ(B(x, r))
⩽ Cε

(
dk
r

)αmax+ε

.

To that end, we apply Lemma 4.6 for the 0 < r < R. Now either (4.2) holds, in
which case we are done by setting d0 = R, or we find r < d1 ⩽ 2−NR, satisfying

(4.9)
µ(B(x,R))

µ(B(x, d1))
⩽

(
R

d1

)αmax+ε

.

In this case, we apply Lemma 4.6 again for 0 < r < d1. Again, either (4.2) is
satisfied with d1 in place of R, in which case we stop the process or we find a scale
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r < d2 ⩽ 2−Nd1, satisfying

µ(B(x, d1))

µ(B(x, d2))
⩽

(
d1
d2

)αmax+ε

.

Continuing in this manner by applying Lemma 4.6 iteratively, at some point the
process stops, since the sequence dℓ decreases exponentially with ℓ. By using (4.8)
and (4.9), we then have

µ(B(x,R))

µ(B(x, r))
=

µ(B(x, dk))

µ(B(x, r))

k∏
m=1

µ(B(x, dm−1))

µ(B(x, dm))

⩽ Cε

(
dk
r

)αmax+ε k∏
m=1

(
dm−1

dm

)αmax+ε

= Cε

(
R

r

)αmax+ε

.

Since this is true for all 0 < r < R, we have dimA(µ, x) ⩽ αmax + ε and the claim
follows since ε > 0 was arbitrary.
Finally, it remains to show that dimA(µ, x) ⩾ αmin. Let 0 < r < R

2
and let

ir ∈ Σ(x, r) be the word satisfying pir = maxi∈Σ(x,r) pi. We also let k ∈ N be

the unique integer such that rir|k < R
2

⩽ rir|k−1
. Since φir(X) ⊂ φir|k(X) and

ir ∈ Σ(x, r), we have

d(x, φir|k(X)) ⩽ d(x, φir(X)) ⩽ r <
R

2
,

and for any y ∈ φir|k(X),

d(x, y) ⩽ d(x, φir|k(X)) + diam(φir|k(X)) <
R

2
+ rir|k < R.

Thus φir|k(X) ⊂ B(x,R), and a calculation similar to (4.7) gives

µ(B(x,R))

µ(B(x, r))
⩾

pir|k
Mpir

⩾
1

M

(
rir|k
rir

)αmin

⩾
rαmin
min

2M

(
R

r

)αmin

,

which finishes the proof. □

We are now ready to prove Theorem 1.2. We exploit the choice of the word k,
and build an abundant sequence in the symbolic space, which allows us to apply the
techniques developed in Section 3. More precisely, for n ⩾ |k|, we let

Γn = {ik ∈ Σn : i ∈ Σn−|k|}.
It is routine to verify that the sequence (Γn) is abundant. Passing to the sub-self-
similar set defined by using Γn as the alphabet ensures enough separation to calculate
the pointwise Assouad dimension on the symbolic side:

Lemma 4.7. For any i ∈ Σ(Γn), we have

dimA(µ, π(i)) = dimA(ν, i).

Proof. Let i = i1ki2k · · · ∈ Σ(Γn), where ij ∈ Σn−|k| for all j ∈ N. It suffices to
verify the following: There is a constant C > 0, such that

pi|m ⩽ µ(B(π(i), r)) ⩽ Cpi|m ,
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for all r > 0, where m ∈ N is the unique integer satisfying ri|m < r ⩽ ri|m−1 . Note
that the lower bound is trivial, since φi|m(X) ⊂ B(π(i), r), so it remains to prove
the upper bound. Let k denote the unique integer satisfying

ri1ri2 . . . rikr
k
k < r ⩽ ri1ri2 . . . rik−1

rk−1
k ,

and note that i|m = i1ki2k . . . ikkl, for some l ∈ Σ∗ satisfying |l| ⩽ n. Applying
Lemma 4.1, gives

µ(B(π(i), r)) ⩽ pi1 · · · pik−1
pk−2
k =

1

p2kpikpl
pi1 · · · pikpkkpl ⩽ Cpi|m ,

where C = p
−2n−|k|
min . □

We conclude by combining the results of this section to prove Theorems 1.1 and
1.2 starting with the latter.

Proof of Theorem 1.2. Recall that

DA
α ⊂ UA

α ⊂ U loc
α

so dimH DA
α ⩽ dimH UA

α ⩽ f(α), by using the fact that Theorem 2.1 holds for self-
similar measures under the OSC. For α ∈ (αmin, αmax) and ε > 0 let Ωε(α) be as in
(3.5) and recall that Ωε(α) ⊂ Σ(Γn). By Lemma 4.7, we have π(Ωε(α)) ⊂ DA

α and the
OSC implies that dimH π(Ωε(α)) = dimHΩε(α). Letting ε ↓ 0 and applying Lemma
3.10, we arrive at dimH DA

α ⩾ f(α).
If α = αmin, it suffices to show by Lemma 3.11, that π(Σ(Λmin)) ⊂ DA

α (µ). For
this, let i ∈ Σ(Λmin), and note that by Theorem 4.5, it is enough to show that
dimA(µ, π(i)) ⩽ αmin. Let 0 < r < R and note that for any j ∈ Σ(x,R), we have

pj =

|j|∏
j=1

r

log pj
log rj

j ⩽ rαmin
j ⩽ Rαmin .

Moreover, by choosing k ∈ N, such that ri|k < r ⩽ ri|k−1
, we see that

µ(B(x, r)) ⩾ pi|k =
k∏

i=1

r
log pi
log ri
i = rαmin

i|k ⩾ rminr
αmin .

Therefore,
µ(B(x,R))

µ(B(x, r))
⩽

∑
j∈Σ(x,R) pj

pi|k
⩽

M

rmin

(
R

r

)αmin

,

implying dimA(µ, π(i)) ⩽ αmin.
The second claim follows easily from Proposition 4.2, since by letting ν be the

canonical self-similar measure satisfying dimH ν = dimHX, we have that ν(DA
∞) = 1,

and thus dimH DA
∞ ⩾ dimH ν = dimH X. Finally, it was shown in Theorem 4.5, that

DA
α = ∅ for α ̸∈ [αmin, αmax] ∪ {dimA µ}. □

Proof of Theorem 1.1. Claim (1) follows from Theorem 1.2, since DA
α(0)(µ) ⊂ D(µ),

and since dimHDA
α(0)(µ) = f(0) = dimHX. Claim (2) is Corollary 4.3. □

Remark 4.8. Excluding αmax from Theorem 1.2 is necessary: In Example 4.4 we
saw that for the (p, 1 − p)-Bernoulli measure on [0, 1], dimA(µ, 0) = αmax = log p

− log 2
.

However, it is not too difficult to see that 0 is the only element in DA
αmax

. Indeed, if
0 < x = π(i) ⩽ 1 is a dyadic rational, then dimA(µ, x) = αmin. On the other hand,
if x is not a dyadic rational and the number of consecutive zeros in i is unbounded,
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µ is not doubling at x and thus dimA(µ, x) = ∞ ̸= αmax. Finally, if the number
of consecutive zero’s in i is bounded by N ∈ N, the computations in Example 4.4
may be refined by replacing all p−m terms by Cp−m(1−1/N)(1− p)−m/N for a suitable
constant C. This yields an upper bound dimA(µ, x) ⩽ (1− 1

N
)αmax +

1
N
αmin < αmax.

Towards the other extreme, note that in the proof of Theorem 3.1, the case α = αmax

is proved by constructing Ωε(α) using the word i = imaximax . . .. In this case, for
a general abudant sequence Γn, it is no longer true that Ωε(α) ⊂ Σ(Γn). However,
one can easily construct non-doubling self-similar measures µ, such that φk(X) ⊂ U ,

for some k ∈ Σ∗ with pk = p
|k|
imax

. In particular, if one defines Ωε(α) using the word
i = imaximax . . ., then Ωε(α) ⊂ Σ(Γn). This gives examples of non-doubling self-similar
measures where dimH DA

αmax
= dimHX. The details are left to the interested reader.

Remark 4.9. The multifractal spectrum for the classical pointwise dimension has
been studied in a variety of more general settings such as for self-similar sets under
less restrictive separation conditions [22, 9, 8, 3]. For self-affine sets the situation is
more complicated, but some results are known [18, 11]. In [1] an exact dimensionality
property for the pointwise Assouad dimension of certain self-affine carpets was
established. It would be of great interest to study the pointwise doubling property,
and more generally, the multifractal spectrum of the pointwise Assouad dimension in
these contexts.
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