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a

Assouad dimension of measures

Recall the definition of the Assouad dimension of a measure.

Definition
Let µ be a finite Borel probability measure fully supported on a
metric space X . The Assouad dimension of µ is defined as

dimA µ = inf
{
s > 0 : ∃C > 0, s.t. ∀x ∈ X , 0 < r < R

µ(B(x ,R))

µ(B(x , r))
≤ C

(
R

r

)s }
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a

Self-conformal sets

An IFS {φi}Ni=1 is a conformal iterated function system if

(C1) There is an open, bounded and connected set Ω ⊂ Rd , and a
compact set X ⊂ Ω with non-empty interior, such that

φi (X ) ⊂ X ,

for all i ∈ {1, . . . ,N}.
(C2) For each i ∈ {1, . . . ,N}, the map φi is a contractive

C 1+ε-diffeomorphism, and φi : Ω → Ω is conformal, that is,
φ′
i (x) is a similarity for all x ∈ Ω.

The limit set F of this IFS is called a self-conformal set.
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Example

Figure: An example of a self-conformal set
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Place dependent probabilities

We choose for each i ∈ {1, . . . ,N} a Hölder continuous function
pi : X → (0, 1), which satisfy

∑N
i=1 pi (x) ≡ 1 and consider the

probability measures µ satisfying the equation∫
f (x)dµ(x) =

N∑
i=1

∫
pi (x)f ◦ φi (x)dµ(x),

for f ∈ C (X ) where C (X ) are the continuous real valued
functions on X .

Measures that satisfy this equation are called
invariant measures for place dependent probabilities. Under
our assumptions, this measure exists and is unique and we denote
it by µ.
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Notation
Let Σ = {1, . . . ,N}N and denote i = (i1, i2, . . .) ∈ Σ. For i ∈ Σ,
let i|n = (i1, . . . , in).

Let π : Σ → F be the natural projection
defined by

{π(i)} =
∞⋂
n=1

φi|n(F ).

For i ∈ Σ and n ∈ N we let

pi|n(σ
ni) =

n∏
k=1

pik (π(σ
ki)).

Denote by P(Σ) ⊂ Σ the set of periodic points of Σ. For
i ∈ P(Σ) with period of length n, we let

pi = pi|n(σ
ni), and |φ′

i| = |φ′
i|n(π(i))|.
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Results

Theorem (A. 2022)

Let µ be an invariant measure for place dependent probabilities
fully supported on a strongly separated self-conformal set F . Then

dimA µ = sup
i∈P(Σ)

log pi
log |φ′

i|
.

This generalizes a result by Fraser and Howroyd (2020):

Corollary
Let µ be a self-similar measure satisfying the SSC. Then

dimA µ = max
i=1,...,N

log pi
log ri

.
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